已知函数f(x)=x+a/x+b,(x≠0),其中a、b∈ R.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 20:13:16
已知函数f(x)=x+a/x+b,(x≠0),其中a、b∈ R.
(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1 ,求函数f(x)的解析式;
(2)讨论函数f(x)的单调性;
(3)若对于任意的 a∈[1/2,2],不等式f(x)
≤ 10在[1/4,1]上恒成立,求b的取值范围.
(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1 ,求函数f(x)的解析式;
(2)讨论函数f(x)的单调性;
(3)若对于任意的 a∈[1/2,2],不等式f(x)
≤ 10在[1/4,1]上恒成立,求b的取值范围.
这道题用导数很好做的
(1)f'(x)=1-a/x^2
f'(2)=1-a/4=3,得a=-8
∴f(x)=x-8/x+b
∴f(2)=b-2
b-2=7,b=9
(2)f'(x)=1-a/x^2
第一种情况,a≤0,f'(x)>0,f(x)单调递增
第二种情况,a>0,令f'(x)=0得x=正负根号a
画表格得:
当x∈(-∞,-根号a)时,f(x)单调增
当x∈(-根号a,根号a)时,f(x)单调减
当x∈(根号a,∞)时,f(x)单调减
综上,当a≤0时,f(x)单调递增区间为(-∞,0)∪(0,+∞)
当a0,∴x+2/x+b≤10对x∈[1/4,1]恒成立
令g(x)=x+2/x+b,g'(x)=1-4/x^2
(1)f'(x)=1-a/x^2
f'(2)=1-a/4=3,得a=-8
∴f(x)=x-8/x+b
∴f(2)=b-2
b-2=7,b=9
(2)f'(x)=1-a/x^2
第一种情况,a≤0,f'(x)>0,f(x)单调递增
第二种情况,a>0,令f'(x)=0得x=正负根号a
画表格得:
当x∈(-∞,-根号a)时,f(x)单调增
当x∈(-根号a,根号a)时,f(x)单调减
当x∈(根号a,∞)时,f(x)单调减
综上,当a≤0时,f(x)单调递增区间为(-∞,0)∪(0,+∞)
当a0,∴x+2/x+b≤10对x∈[1/4,1]恒成立
令g(x)=x+2/x+b,g'(x)=1-4/x^2
已知函数 f(x)=Asin(π/3x+b),x∈R,A>0,0
已知函数f(x)=x³/3-[(a+1)x²]/2+bx+a(其中a,b∈R),其导函数f'(x)的
(2014•天津模拟)已知函数f(x)=x3-3ax2+b(x∈R),其中a≠0,b∈R.
已知函数f(x)=Asin(wx+b)+k,x∈R(其中A>0,W>0,0
已知函数f(X)=ax3-3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=f(x),(x>0)或-f(x),(x0)或-f(
已知向量a=(2coswx,1),b=(根号3sinwx-coswx,n),其中x∈R,w>0,函数f(x)=a*b(x
(2014•海淀区二模)已知函数f(x)=13x3+ax2+4x+b,其中a、b∈R且a≠0.
已知函数f(x)=x+4x+3a,f(bx)=16x–16x+9,其中x∈R,a,b为常数,则方程f(ax+b)=0的解
】已知函数f(x)=x的3次方+ax方+x+b,其中a,b属于R
已知函数f(x)=ax²+bx+1(a,b为实数),x∈R,F(x)={f(x) (x>0) ;-f(x) (
已知函数f(x)=a*2^x+b*3^x,其中常数a,b满足a*b≠0.