设椭圆C:x^2/9+y^2/4=1的左右焦点分别为F1、F2,点P为C上动点,若向量|PF1|·向量|PF
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 09:57:57
设椭圆C:x^2/9+y^2/4=1的左右焦点分别为F1、F2,点P为C上动点,若向量|PF1|·向量|PF
依题意:∠F1PF2为钝角,在△F1PF2中依余弦定理有:
│F1P│^2+│F2P│^2<│F1F2│^2=4c^2=20
设P为(x0,y0)由焦半径公式*:
│F1P│=a+ex0,│F2P│=a-ex0
于是:-3√5/5<x0<3√5/5.
*注:焦半径公式P(x0,y0)为椭圆x^2/a^2+y^2/b^2=1上一点F1为右焦点
右准线为x=a^2/c=a/e
P到右准线的距离为:d=a/e-x0
由椭圆的第二定义(到定点的距离等于 e 乘以它们到定直线的距离)
│PF1│=ed=a-ex0
由椭圆的第一定义(到两定点的距离和为常数)
│PF2│=2a-│PF1│=a+ex0.
│F1P│^2+│F2P│^2<│F1F2│^2=4c^2=20
设P为(x0,y0)由焦半径公式*:
│F1P│=a+ex0,│F2P│=a-ex0
于是:-3√5/5<x0<3√5/5.
*注:焦半径公式P(x0,y0)为椭圆x^2/a^2+y^2/b^2=1上一点F1为右焦点
右准线为x=a^2/c=a/e
P到右准线的距离为:d=a/e-x0
由椭圆的第二定义(到定点的距离等于 e 乘以它们到定直线的距离)
│PF1│=ed=a-ex0
由椭圆的第一定义(到两定点的距离和为常数)
│PF2│=2a-│PF1│=a+ex0.
设F1、F2分别是椭圆x^2/16+y^2/7=1的左右焦点,若点P在椭圆上,且向量PF1点乘向量PF2=0,则向量PF
一道圆锥曲线数学题设F1,F2分别是椭圆X^2/4+y^2=1的左右焦点.(1)若P是该椭圆上一动点,求向量PF1·PF
设F1,F2分别是椭圆x^2/4+y^2=1的左右焦点.若点p是该椭圆上的一个懂点,求向量PF1*向量PF2的最大和最小
设F1,F2分别是椭圆x^/9+y^/4的左右焦点.若点p在椭圆上,且向量PF1和PF2的模=2根号5.求PF1.PF2
设F1,F2为双曲线C:x^2-y^2/4=1的两个焦点,点P在双曲线上,当△F1PF2的面积为1时,求 向量PF1·积
设F1,F2为椭圆x^2/4+y^2=1上的两焦点,P在椭圆上,当△F1PF2的面积为1时,向量PF1·向量PF2=?
椭圆X^2/a^2+Y^2/b^2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且│PF1│=4/3,│PF
已知椭圆C:x^2/49+y^2/24=1的焦点为F1,F2,P为椭圆上一点,向量PF1*向量PF2=0 求△PF1F2
设椭圆c:x^2/a^2+y^2/2=1(a>0)的左右焦点分别为F1、F2,A是椭圆C上一点,且向量AF2*向量F1F
已知椭圆E:x^2/2+y^2/4=1的左、右焦点分别是F1,F2,点P为椭圆E第一象限上一点,且满足向量(PF1)点乘
已知F1、F2是椭圆C:x^2/a^2+y^2/b^2=1的两个焦点,P为C上一点,且向量PF1与向量PF2的积为0.
设F1·F2分别是椭圆x^2/25+y^2/16=1的左右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则PM+PF