插补函数三角函数问题1. R2=(A(cosx+cosy)-x0)2+(A(sinx+siny)-y0)22. sinx
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 13:01:14
插补函数三角函数问题
1. R2=(A(cosx+cosy)-x0)2+(A(sinx+siny)-y0)2
2. sinx+siny=aA(cosx+cosy)2+b(cosx+cosy)+c/A
3. x=A(cosx+cosy) y=A(sinx+siny)
求y=F(x)
在括号后面的2是平方,x0是Xo,y0是Yo
1. R2=(A(cosx+cosy)-x0)2+(A(sinx+siny)-y0)2
2. sinx+siny=aA(cosx+cosy)2+b(cosx+cosy)+c/A
3. x=A(cosx+cosy) y=A(sinx+siny)
求y=F(x)
在括号后面的2是平方,x0是Xo,y0是Yo
1.方法是一样的:
展开:R²=A²(cosx+cosy)²+x0²-2Ax0(cosx+cosy)+A²(sinx+siny)²+y0²-2Ay0(sinx+siny)
R²=A²[2+2cosxcosy+2sinxsiny]-2Ax0(cosx+cosy)-2Ay0(sinx+siny)+x0²+y0²
同样化成psiny+qcosy=r,这里p,q,r都为x的函数.
得√(p²+q²)sin(y+t)=r,t=arctan(q/p)
同样得y.
2.这题会麻烦很多,因为有cos²y,cosy,siny这几项,
化为:siny=aA(cosx+cosy)²+b(cosx+cosy)+c/A-sinx
两边平方,再利用sin²y=1-cos²y,得:
1-cos²y=[aA(cosx+cosy)²+b(cosx+cosy)+c/A-sinx]²
再令t=cosy,就化成关于t的一元四次方程,可用求根公式来解得t.
3.这是两个求知数,两个方程,可以用数值方法求得解(x,y).
由1式得:cosy=x/A-cosx
则有 siny=±√[1-cos²y]=±√[1-(x/A-cosx)²]
代入2式得:y=A[sinx+siny]=A[sinx±√[1-(x/A-cosx)²]
展开:R²=A²(cosx+cosy)²+x0²-2Ax0(cosx+cosy)+A²(sinx+siny)²+y0²-2Ay0(sinx+siny)
R²=A²[2+2cosxcosy+2sinxsiny]-2Ax0(cosx+cosy)-2Ay0(sinx+siny)+x0²+y0²
同样化成psiny+qcosy=r,这里p,q,r都为x的函数.
得√(p²+q²)sin(y+t)=r,t=arctan(q/p)
同样得y.
2.这题会麻烦很多,因为有cos²y,cosy,siny这几项,
化为:siny=aA(cosx+cosy)²+b(cosx+cosy)+c/A-sinx
两边平方,再利用sin²y=1-cos²y,得:
1-cos²y=[aA(cosx+cosy)²+b(cosx+cosy)+c/A-sinx]²
再令t=cosy,就化成关于t的一元四次方程,可用求根公式来解得t.
3.这是两个求知数,两个方程,可以用数值方法求得解(x,y).
由1式得:cosy=x/A-cosx
则有 siny=±√[1-cos²y]=±√[1-(x/A-cosx)²]
代入2式得:y=A[sinx+siny]=A[sinx±√[1-(x/A-cosx)²]
高一数学已知sinx+cosy=a,cosx+siny=a则sinx+cosx为
若a不等于0,且sinx+siny+a,cosx+cosy=阿尔法,则sinx+cosx=
已知向量a( cosx,sinx)b(cosy ,siny)(0
三角函数难题:若sinx+siny=1.则cosx+cosy的取值范围
请教一道三角函数题若sinx+siny=1/2 求 cosx+cosy的值域
若a≠0且sinx+siny=a,cosx+cosy=a,则sinx+cosx=______.
已知sinx减siny等于负三分之二(sinx-siny=-2/3);cosx加cosy等于三分之二(cosx+cosy
已知向量a=(cosx,sinx),向量b=(cosy,siny),|a-b|=2*&5/5,
设向量a=(cosx,sinx)b=(cosy,siny),其中0
向量a=(cosx,sinx) b=(cosy,siny) 为什么它们的夹角是y-x
已知向量a=(cosx,sinx),b=(-siny,cosy),且x属于[π/4,π/2]
证明cosx(cosx-cosy)+sinx(sinx-siny)=2sin(x-y)/2