设a>0,f(x)=(e^x/a)+(a/e^x)在R上的图像关于y轴对称;
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 08:35:12
设a>0,f(x)=(e^x/a)+(a/e^x)在R上的图像关于y轴对称;
求:
①求a的值.
②求证:f(x)在(0,+无群大)上是增函数.
求:
①求a的值.
②求证:f(x)在(0,+无群大)上是增函数.
设a>0,f(x)=(e^x/a)+(a/e^x)在R上的图像关于y轴对称
因为偶函数的图像关于y轴对称,
所以有f(-x)=f(x),则
(e^(-x)/a)+(a/e^(-x))=(e^x/a)+(a/e^x)
化简得
1/ae^x+ae^x=(e^x/a)+(a/e^x)
继续可得
(1/a-a)(1/e^x-e^x)=0
所以1/a-a=0,则a=-1,1
又a>0,所以a=1
f(x)在(0,+∞)上是增函数
设0
因为偶函数的图像关于y轴对称,
所以有f(-x)=f(x),则
(e^(-x)/a)+(a/e^(-x))=(e^x/a)+(a/e^x)
化简得
1/ae^x+ae^x=(e^x/a)+(a/e^x)
继续可得
(1/a-a)(1/e^x-e^x)=0
所以1/a-a=0,则a=-1,1
又a>0,所以a=1
f(x)在(0,+∞)上是增函数
设0
设a﹥0,f(x)=e^x/a +a/e^x是R上的偶函数.证明f(x)在(0,正无穷大)上是增函数
设f(x)=e^-x/a+a/e^-x是定义在R上的函数.
已知函数f(x)=|x+1|+|x-a|(x∈R,a是常数)的图像关于y轴对称
设a>0,f(x)=e∧x/a+a/e∧x在R上满足f(-x)=f(x).(1)求a的值;(2)证明f(x)在(0,+∞
.已知函数y=f(x)与y=e^x互为反函数函数y=g(x)的图像与y=f(x)图像关于x轴对称若g(a)=1则实数a值
设定义在实数集R上的函数,f(x)=(e^x/a)+(a/e^x) (1) f(x
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数.(1)求a的值.(2)证明f(x)在(0,+∞)上的单调性
已知f(x)是定义域在R上的函数,其图像关于y轴对称,且在[a,b](ab>0)上是增函数,证明y=f(x)在[-b,-
设a大于0,f(x)=e的x次方/a+a/e的x次方,是 R 上的偶函数,1问:求a的值;2问:证明f(x) 在 (0,
设a>0,f(X)=[(e的x次方)/a]+[a/(e的x次方)]是R上的偶函数
设a大于0,f(x)=(a分之e的x次方)加(e的x次方分之a)是R上的偶函数
设a>0,f(X)=(e^x)/a+a/(e^x)是R上的偶函数 求a的值(2)证明f(x)在(0,正无穷)上是增函数