作业帮 > 数学 > 作业

用介值定理证明这道题第一问

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 06:17:08
用介值定理证明这道题第一问

因为f(x)在【0,2】内连续,所以f(2)属于【m,M】,f(3)属于【m,M】,所以f(2)+f(3)属于【2m,2M】,不等式两边同除2,所以存在n属于【0,2】使得f(n)属于【m,M】,所以2f(n)=f(2)+f(3)=2f(0)

这个想法对吗
用介值定理证明这道题第一问
不对
∵m=min{0≤x≤3}f(x),M=max{0≤x≤3}f(x)
∴m≤[f(2)+f(3)]/2≤M
1.若[f(2)+f(3)]/2=m或[f(2)+f(3)]/2=M,则f(2)=f(3)=f(0)=m或f(2)=f(3)=f(0)=M
此时,并不能证明存在η∈(0,2),使得f(η)=[f(2)+f(3)]/2=f(0)
2.若m