设F为抛物线y∧2=2px(p>0)的焦点,A,B,C为该抛物线上三点,当向量FA+向量FB+向量FC=0,且FA+FB
设F为抛物线y^2=4x的焦点,A.B.C为该抛物线上三点,若向量FA+向量FB+向量FC=0,则/FA/+/FB/+/
设F为抛物线y^2=4x的焦点,A,B,C为该抛物线上3点,若FA(向量)+FB(向量)+FC(向量)=0(向量)
F为抛物线y方=4x的焦点,A,B,C为抛物线上的三点,若向量FA+向量FB+向量FC=0向量,则|FA|+|FB|+|
1.设F为抛物线 y^2=4x 的焦点,A、B、C为抛物线上3点,若FA+FB+F=0 (是向量) 则|FA|+|FB|
已知点c为y方=2px(p>0)的准线与x轴的交点,点f为焦点,点a,b为抛物线上的两点,若向量fa+向量fb+2向量f
设F为抛物线y^2=4x的焦点,A、B为该抛物线上两点,若向量FA+2FB=0,则|FA|+2|FB|=______
设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若FA+FB+FC=0,则|FA|+|FB|+|FC|的值为(
已知C为y^2=2PX(P大于0)的准线于X轴的交点,点F为焦点.A,B为抛物线上两点若FA+FB+2FC=0
已知抛物线C:y^2=2px(p>0)过焦点F且斜率为k(k>0)的直线与C相交于A,B两点,若向量AF=3向量FB,则
已知点C为y2=2px(p>0)的准线与x轴的交点,点F为焦点,点A、B为抛物线上两个点,若FA+FB+2FC=0,则向
设F为抛物线y^2=4x的焦点,ABC抛物线上的三点,若FA+FB+FC=0(向量),证明:三角形ABC不可能是直角三角
设F为抛物线y^2=2px(p〉0)的焦点,点A在抛物线上,O为坐标原点,若 ∠OFA=120度 ,且向量FO乘向量FA