若f(x)具有性质:①f(x)为偶函数,②对任意x∈R,都有f(π4
已知f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+4)=f(x)+f(2),若f(1)=2,则f(2009)+
若函数f(X)同时具有以下两个性质:①f(X)是偶函数,②定义域为R,则f(X)的解析式可以是()
已知f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+6)=f(x)+f(3)成立,若f(5)=2,则f(200
在实数R上y=f(x)具有性质1:对任意x∈R,都有f(x^3)=[f(x)]^3;
计算:设偶函数f(x)对任意的x∈R都有f(x+3)=−1f(x)
偶函数f(x)定义域为R,若f(x-1)=f(x+1)对任意实数都成立
已知定义在R上的函数f(x),写出命题“若对任意实数x都有f(-x)=f(x),则f(x)为偶函数”的否定:______
设偶函数f(x)对任意x∈R,都有f(x+3)=-1f(x),且当x∈[-3,-2]时,f(x)=2x,则f(113.5
已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+2f(3),f(-1)=2,则f(2011)
已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+4)=f(x)+f(2)成立.若f(1)=2,则f(2005
定义域为R的偶函数f满足对任意的x属于R,都有f=f-f,且当x∈【2,3】时,f=-2x^2+12x-18,若函数y=
已知f(x)是定义在R上的偶函数,且对任意x∈R都有f(2+x)=f(2-x).当x∈[0,2]时,f(x)=3x+2