1、三角形OAB的两顶点,O坐标是(0,0),A坐标是(1,0),顶点B满足角OBA等于π/2,求三角形OAB的内切圆的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 19:17:36
1、三角形OAB的两顶点,O坐标是(0,0),A坐标是(1,0),顶点B满足角OBA等于π/2,求三角形OAB的内切圆的圆心的轨迹方程?
2、已知圆满足满足①截Y轴所得的弦长为2,被X轴分截两段圆弧,其弧长的毕为3:1,圆心到直线L:x-2y=0的距离为5分之根号5,求该圆的方程?
2、已知圆满足满足①截Y轴所得的弦长为2,被X轴分截两段圆弧,其弧长的毕为3:1,圆心到直线L:x-2y=0的距离为5分之根号5,求该圆的方程?
楼主不好意思,这两道题尤其是第一题实在不好语言表述,可能显得很罗嗦,请耐心看完,其实很好理解
第1题主要是利用一个几何关系,第2题则是解方程是难点
1.以OA为直径做圆,无疑,圆上任意一点与O,A连接所成的角必为直角(直径所对的圆心角为90度),而在△OAB中,由题意知∠OBA=π/2=90度,因此可知点B必在以OA为直径的圆上,以此圆可求出是以(1/2,0)为圆心,半径为1/2的圆,故其圆内任意一点的横坐标取值范围都是(0,1)之间,纵坐标必在(-1,1)之间,(也就是此圆内任意一点的坐标范围)
设△OAB的内切圆圆心,即三角形的内心为P(x,y),则P必位于△PAB中,于是此P点的横坐标x的取值范围一定是在(0,1)之间,纵坐标y则是在(-1,1)之间,即满足0
第1题主要是利用一个几何关系,第2题则是解方程是难点
1.以OA为直径做圆,无疑,圆上任意一点与O,A连接所成的角必为直角(直径所对的圆心角为90度),而在△OAB中,由题意知∠OBA=π/2=90度,因此可知点B必在以OA为直径的圆上,以此圆可求出是以(1/2,0)为圆心,半径为1/2的圆,故其圆内任意一点的横坐标取值范围都是(0,1)之间,纵坐标必在(-1,1)之间,(也就是此圆内任意一点的坐标范围)
设△OAB的内切圆圆心,即三角形的内心为P(x,y),则P必位于△PAB中,于是此P点的横坐标x的取值范围一定是在(0,1)之间,纵坐标y则是在(-1,1)之间,即满足0
在平面直角坐标系中 Rt三角形OAB的顶点A的坐标为(根号3,1)B的坐标是(根号3,0)O为坐标原点,若将三角形OAB
已知三角形OAB顶点A(3,0),B(0,1),O是坐标原点.将三角形OAB绕点O按逆时针旋转90度得到三角形ODC.过
在直角坐标系内,三角形OAB的三个顶点坐标分别是在直角坐标系内,三角形OAB的三个顶点坐O(0,0)A(8,0)B(7,
已知三角形OAB的三个顶点的坐标为O(0,0),A(一2,2),B(一3,一4),求这个要角形的面积!
A,B两点的坐标分别是A(根号2,1).B(根号5,0),求三角形OAB的面积
三角形OAB的三个顶点坐标分别是O(0,0)A(1,0)B(0,2),点p是平面内一点,向量AP*向量OA≤0,向量BP
如图,已知△OAB的顶点A(3,0),B(0,1),O是坐标原点.将△OAB绕点O按逆时针旋转90°得到△ODC.
三角形OAB的三个顶点坐标分别是(0,0)(6,0)(4,4)
以原点o和A(4,2)为两个顶点作等腰直角三角形OAB,且∠OBA=90°,求顶点B的坐标
如图,A、B两点的坐标分别是A(1,根号2)、B(根号5,0),求三角形OAB的面积(精确到0.1)
△OAB的三个顶点坐标分别是O(0,0),A(2,0),B(0,4).
如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.