∫cost的六次方dt
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 06:34:41
∫cost的六次方dt
t的范围是0到二分之π
t的范围是0到二分之π
∫cos⁶tdt
降幂
=(1/8)∫(1+cos2t)³dt
=(1/8)∫(1+3cos2t+3cos²2t+cos³2t)dt
里面的cos²2t还需要降幂
=(1/8)∫(1+3cos2t+(3/2)(1+cos4t)+cos³2t)dt
=(1/8)∫(5/2+3cos2t+(3/2)cos4t)dt+(1/8)∫cos³2tdt
=(1/8)(5t/2+(3/2)sin2t+(3/8)sin4t)+(1/16)∫cos²2td(sin2t)
=(1/8)(5t/2+(3/2)sin2t+(3/8)sin4t)+(1/16)∫[1-sin²2t]d(sin2t)
=(1/8)(5t/2+(3/2)sin2t+(3/8)sin4t)+(1/16)[sin2t-(1/3)sin³2t] |[0---->π/2]
=5π/32
降幂
=(1/8)∫(1+cos2t)³dt
=(1/8)∫(1+3cos2t+3cos²2t+cos³2t)dt
里面的cos²2t还需要降幂
=(1/8)∫(1+3cos2t+(3/2)(1+cos4t)+cos³2t)dt
=(1/8)∫(5/2+3cos2t+(3/2)cos4t)dt+(1/8)∫cos³2tdt
=(1/8)(5t/2+(3/2)sin2t+(3/8)sin4t)+(1/16)∫cos²2td(sin2t)
=(1/8)(5t/2+(3/2)sin2t+(3/8)sin4t)+(1/16)∫[1-sin²2t]d(sin2t)
=(1/8)(5t/2+(3/2)sin2t+(3/8)sin4t)+(1/16)[sin2t-(1/3)sin³2t] |[0---->π/2]
=5π/32