直三棱柱ABC-A1B1C1中,AC=BC=1/2AA1,D为棱AA1中点,DC1垂直于BD 求二
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 10:56:35
直三棱柱ABC-A1B1C1中,AC=BC=1/2AA1,D为棱AA1中点,DC1垂直于BD 求二
面角A1-BD-C1
1(请用建立空间向量的方法求出二面角)2(希望过程详细)3给出一个平面A1DC1的法向量)
面角A1-BD-C1
1(请用建立空间向量的方法求出二面角)2(希望过程详细)3给出一个平面A1DC1的法向量)
1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°
同理:∠A1DC1=45°,∴∠CDC1=90°
∴DC1⊥DC,DC1⊥BD
∵DC∩BD=D
∴DC1⊥面BCD
∵BC⊂面BCD
∴DC1⊥BC
∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,
∵AC⊂面ACC1A1,∴BC⊥AC
取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH
∵A1C1=B1C1,∴C1O⊥A1B1,
∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,
∴C1O⊥面A1BD
∵OH⊥BD,∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1-BD-C1的平面角
设AC=a,则C1O= 2 a 2 ,C1D= 2 a=2C1O,
∴sin∠C1DO=1 2∴∠C1DO=30°
即二面角A1-BD-C1的大小为30°
同理:∠A1DC1=45°,∴∠CDC1=90°
∴DC1⊥DC,DC1⊥BD
∵DC∩BD=D
∴DC1⊥面BCD
∵BC⊂面BCD
∴DC1⊥BC
∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,
∵AC⊂面ACC1A1,∴BC⊥AC
取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH
∵A1C1=B1C1,∴C1O⊥A1B1,
∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,
∴C1O⊥面A1BD
∵OH⊥BD,∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1-BD-C1的平面角
设AC=a,则C1O= 2 a 2 ,C1D= 2 a=2C1O,
∴sin∠C1DO=1 2∴∠C1DO=30°
即二面角A1-BD-C1的大小为30°
(2012海南数学)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=1/2AA1,D是棱AA1的中点,DC1⊥BD
如图直三棱柱ABC–A1B1C1中,AC=BC=1/2.D是楞AA1的终点,DC1垂直于BD.证明DC1垂直于BC,.求
在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3
直三棱柱abc—a1b1c1中,ab垂直于ac,d、e分别为aa1、b1c的中点,de垂直于平面bcc1,问1:证明AB
如图,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=2,D 是A1B1中点.
在直三棱柱ABC-A1B1C1中(即侧棱垂直于底面 的三棱柱),角ACB=90,AA1=BC=2AC=2
直三棱柱abc—a1b1c1中,ab垂直于ac,d、e分别为aa1、b1c的中点,de垂直于平面bc60度,
正三棱柱ABC-A1B1C1 中D为CC1的中点 AB=AA1 证明BD垂直AB1
(2014•包头二模)如图,直三棱柱ABC-A1B1C1中AA1=2AC=2BC,D是AA1的中点,CD⊥B1D.
如图,三棱柱ABC—A1B1C1的侧棱AA1垂直于底面ABC,AA1=2,AC=BC=1,∠BCA=90°
(2011•江苏二模)如图,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,E为
(2014•重庆二模)如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=3,AC=BC=2,D为AB中点,