作业帮 > 数学 > 作业

已知函数f(x)=log a (mx-1)/(1-x) (a>0,a≠1,m≠1)是奇函数.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:06:36
已知函数f(x)=log a (mx-1)/(1-x) (a>0,a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)当a>1时,判断函数f(x)在(1,+无穷)上的单调性,并给出证明.
已知函数f(x)=log a (mx-1)/(1-x) (a>0,a≠1,m≠1)是奇函数.
(1)f(-x)=loga#[(-mx-1)/(1+x)]=-f(x)=loga#[(1-x)/(mx-1)]=loga#[(x-1)/(1-mx)],故m=-1
(2)f(x)=loga#[(x+1)/(x-1)],(x+1)/(x-1)>0,即x>1或x1时为减函数,证明如下:
当a>1时,设1