.三角形PAB中,PA垂直PB,PA=a,PB=b
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 08:17:14
.三角形PAB中,PA垂直PB,PA=a,PB=b
三角形PAB中,PA垂直PB,PA=a,PB=b,设点P到斜边的距离为h,则1/h^2=1/a^2+1/b^2,将此结论推广到空间,可得到类似的结论.
(1)在三棱锥P-ABC中,写出你的结论,并证明.
(2)在长方体ABCD-A1B1C1D1中,AB=a,BC=b,AA1=c,利用上述结论求点B1到平面A1BD的距离.
三角形PAB中,PA垂直PB,PA=a,PB=b,设点P到斜边的距离为h,则1/h^2=1/a^2+1/b^2,将此结论推广到空间,可得到类似的结论.
(1)在三棱锥P-ABC中,写出你的结论,并证明.
(2)在长方体ABCD-A1B1C1D1中,AB=a,BC=b,AA1=c,利用上述结论求点B1到平面A1BD的距离.
(1)PA、PB、PC两两垂直,PA=a,PB=b,PC=c,设点P到三角形ABC距离为h,则1/h^2=1/a^2+1/b^2+1/c^2.
证明:三角形ABC面积的2倍为根号下(a^2b^2+a^2c^2+b^2c^2)(这个可以通过秦九韶的“三斜求积术”证得,也可以借助立体解析几何中的叉乘法)
根据三棱锥体积公式,体积的6倍的平方=a^2b^2c^2=h^2(a^2b^2+a^2c^2+b^2c^2),两边同除以a^2b^2c^2h^2即得.
(2)考虑三棱锥A-A1BD,显然(1)的所有条件都满足,设A到平面A1BD的距离为h,则1/h^2=1/a^2+1/b^2+1/c^2,h=1/根号下(1/a^2+1/b^2+1/c^2)
又易见三棱锥B1-A1BD与三棱锥A-A1BD同底,等体积,故高相等,
所以点B1到平面A1BD的距离=h=1/根号下(1/a^2+1/b^2+1/c^2).
证明:三角形ABC面积的2倍为根号下(a^2b^2+a^2c^2+b^2c^2)(这个可以通过秦九韶的“三斜求积术”证得,也可以借助立体解析几何中的叉乘法)
根据三棱锥体积公式,体积的6倍的平方=a^2b^2c^2=h^2(a^2b^2+a^2c^2+b^2c^2),两边同除以a^2b^2c^2h^2即得.
(2)考虑三棱锥A-A1BD,显然(1)的所有条件都满足,设A到平面A1BD的距离为h,则1/h^2=1/a^2+1/b^2+1/c^2,h=1/根号下(1/a^2+1/b^2+1/c^2)
又易见三棱锥B1-A1BD与三棱锥A-A1BD同底,等体积,故高相等,
所以点B1到平面A1BD的距离=h=1/根号下(1/a^2+1/b^2+1/c^2).
已知二次函数图像经过点A(3,0).B(2,-3)C(0,-3)求对称轴上点P坐标使三角形PAB中PA=PB
在三角形ABC所在平面外一点P,PA=PB,BC垂直平面PAB,M为PB中点,N为AB上的一点
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB垂直平面ABCD,PA垂直PB,BP=BC,E为PB的中点。
三棱锥P-ABC中,PB垂直AC,PA=PB=PC,E,F分别是PA,PB的中点,且EF垂直CE,求证平面PAB,平面P
如果P是函数y=e^x图像上一点,过P的切线交x轴于A,PA垂直于PB,B在x轴上,三角形PAB面积为1,则P坐标为?
如图,PA,PB切圆O于点A,B,PA垂直PB于点P.若PA=4,求图中阴影部分的面积.
如图,PA,PB切圆O于点A,B,PA垂直PB于点P.若PA=4,求图中阴影部分的面积
一道数学题:在等腰三角形ABC中,AB=AC>BC,在平面上取一点P,连接PA,PB,PC,使三角形PAB,PAC,PB
已知P为三角形ABC外一点,PA,PB,PC两两垂直,PA=PB=PC=a,求点P到面ABC的距离
P为三角形ABC外一点,PA PB PC两两垂直,PA=PB=PC=a,求点P到平面ABC的距离
如下图,已知三角形ABC是正三角形,PA垂直平面ABC,且PA=PB=a,求PB和AC所成角的大小
在四面体PABC中,PA,PA,PA两两垂直,设PA=PB=PC=a,求点P到平面ABC的距离