Cn=bn/an,求数列Cn的前n项和Tn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 05:17:36
Cn=bn/an,求数列Cn的前n项和Tn
an=(2)n次方 bn=3n-1
an=(2)n次方 bn=3n-1
an=2^n,bn=3n-1,cn=bn/an
所以 Tn= 2/2 +5/2^2 +8/2^3 +11/2^4 +...+(3n-1)/2^n
所以 2Tn=2 +5/2 +8/2^2 +11/2^3 +...+(3n-1)/2^(n-1)
所以 Tn=2Tn-Tn=2 +(5-2)/2 +(8-5)/2^2 +(11-8)/2^3 +...+(3n-1-3n+4)/2^(n-1) -(3n-1)/2^n
所以 Tn=2 +3*[1/2 +1/4 +1/8 +...+1/2^(n-1)] -(3n-1)/2^n
所以 Tn=2 +3*(1/2)*[1 -(1/2)^(n-1)]/(1 -1/2) -(3n-1)/2^n
所以 Tn=2 +3*[1 -2^(1-n)] -(3n-1)*2(-n)
所以 Tn=2 +3 -6*2^(-n) -(3n-1)*2^(-n)
所以 Tn=5 -(3n+5)*2^(-n)
检验:
an=2,4,8,16,32,.
bn=2,5,8,11,14,.
cn=1,5/4,1,11/16,7/16,.
Tn=1,9/4,13/4,63/16,35/8,.
Tn通项公式中:
T1=5 -(3*1+5)*2^(-1)=5 -8/2=1
T2=5 -(3*2+5)*2^(-2)=5 -11/4=9/4
T3=5 -(3*3+5)*2^(-3)=5 -7/4=13/4
T4=5 -(3*4+5)*2^(-4)=5 -17/16=63/16
T5=5 -(3*5+5)*2^(-5)=5 -5/8=35/8
.符合
所以 Tn= 2/2 +5/2^2 +8/2^3 +11/2^4 +...+(3n-1)/2^n
所以 2Tn=2 +5/2 +8/2^2 +11/2^3 +...+(3n-1)/2^(n-1)
所以 Tn=2Tn-Tn=2 +(5-2)/2 +(8-5)/2^2 +(11-8)/2^3 +...+(3n-1-3n+4)/2^(n-1) -(3n-1)/2^n
所以 Tn=2 +3*[1/2 +1/4 +1/8 +...+1/2^(n-1)] -(3n-1)/2^n
所以 Tn=2 +3*(1/2)*[1 -(1/2)^(n-1)]/(1 -1/2) -(3n-1)/2^n
所以 Tn=2 +3*[1 -2^(1-n)] -(3n-1)*2(-n)
所以 Tn=2 +3 -6*2^(-n) -(3n-1)*2^(-n)
所以 Tn=5 -(3n+5)*2^(-n)
检验:
an=2,4,8,16,32,.
bn=2,5,8,11,14,.
cn=1,5/4,1,11/16,7/16,.
Tn=1,9/4,13/4,63/16,35/8,.
Tn通项公式中:
T1=5 -(3*1+5)*2^(-1)=5 -8/2=1
T2=5 -(3*2+5)*2^(-2)=5 -11/4=9/4
T3=5 -(3*3+5)*2^(-3)=5 -7/4=13/4
T4=5 -(3*4+5)*2^(-4)=5 -17/16=63/16
T5=5 -(3*5+5)*2^(-5)=5 -5/8=35/8
.符合
若cn=an/bn,Tn为数列Cn的前n项和求Tn
已知数列an=4n-2和bn=2/4^(n-1),设Cn=an/bn,求数列{Cn}的前n项和Tn
【数列求和】已知Cn=an*bn=2^n*(2n)求{cn}的前n项和Tn
已知数列{cn}满足cn=3/bnxb(n+1),bn=3n-2.求数列{cn}的前n项和Tn
已知数列{an}的前n项和Sn=n^2,数列{bn}的前n项积Tn=3^(n^2),数列{Cn}满足cn=an/bn,求
已知数列{an}的前n项和为Sn,且对任意n属于N+有an+Sn=n,设Cn=n(1-bn)求数列{Cn}的前n项和Tn
通项an=n,数列(bn)的前n项和为Sn,且Sn+bn=2,求bn的通项公式 令数列Cn=an*bn,求其前n项和Tn
记数列An前n项积为Tn=1-An,记Cn=1/Tn.数列bn的前n项和为Sn且Sn=1-bn.(1)证明Cn是等差数列
已知数列{an}的前n项和为Tn,且满足Tn=1-an,数列{bn}的前n项和Sn,Sn=1-bn,设Cn=1/Tn,证
(2/2)列an.bn的通项公式;2.记cn=an*bn,求数列cn的前n项和sn.
已知数列an是等差数列,a2=6,a5=18,数列bn的前n项和是Tn,Tn+1/2bn=1.设cn=an×bn,求证c
已知数列的前n项和Sn=2n^2+2n,数列bn的前n项和Tn=2-bn,设cn=an*bn,证明:当且仅当n>=3时c