作业帮 > 数学 > 作业

定义在R上的函数f(x)=a|x-1|+b,(b≠1)若关于x的方程f(x)=x恒有解,求实数a、b应满足的条件是

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 15:07:11
定义在R上的函数f(x)=a|x-1|+b,(b≠1)若关于x的方程f(x)=x恒有解,求实数a、b应满足的条件是
定义在R上的函数f(x)=a|x-1|+b,(b≠1)若关于x的方程f(x)=x恒有解,求实数a、b应满足的条件是
f(x)=x
即:a|x-1|+b=x
(1)a=0时,方程恒有x=b
(2)a≠0时,方程变形为:|x-1|=(x-b)/a
即:|x-1|=x/a-b/a
方程有解,即:y1=|x-1|和y2=x/a-b/a的图像有交点
数形结合,画出y1=|x-1|的草图,是关于x=1对称的一个V字形;
y2=x/a-b/a是过点(b,0)的一条直线
①b0或1/a0或-1