设X1=lna,Xn+1=Xn+ln(a-xn),求Xn极限
设X1=X2=1,Xn+1=Xn+Xn-1.令Tn=Xn+1/Xn 证明数列Tn收敛并求极限
设x1>-6,xn+1=√xn+6,证明{xn}极限存在
证明数列收敛 求极限设X1>0 a>0 且 X(n+1)=1/2(Xn+a/Xn) 求数列{Xn}极限
设Xn>0,Xn+1(第n+1项)=ln(1+Xn),求n趋向于无穷时Xn的极限
设0Xn=(Xn-1)*[1-(Xn-1)]*[1-(Xn-1)-(Xn-1)^2]=-----=X1*[1-X1]*[
数列{Xn}中,x1=a>0,xn+1=1/2(xn+a/xn).若次数列的极限存在,且大于0,求这个极限.
设X1=1,Xn+1=3(Xn+1)(Xn+3)(n=1,2……),证明Xn的极限存在,并求极限值
设X0=7,X1=3,3Xn=2Xn-1+Xn-2,证明数列Xn收敛,并求极限
设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.
设x1=1,x2=2,xn+2=根号下xn+1*xn 求limn→∞ xn
设X1>0,xn+1=3(1+xn) / 3+xn (n=1,2…)求lim xn.
数列{Xn}中,X1>0,a>0,Xn+1=1/2(Xn+a/Xn).