导数的证明!(1):f(x)=a^x,证明:f(x)'=a^x*(1/ln(a))...(2):f(x)=log(a)X
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 22:14:55
导数的证明!
(1):f(x)=a^x,证明:f(x)'=a^x*(1/ln(a))...
(2):f(x)=log(a)X,证明:f(x)'=1/(x*ln(a))...
(1):f(x)=a^x,证明:f(x)'=a^x*(1/ln(a))...
(2):f(x)=log(a)X,证明:f(x)'=1/(x*ln(a))...
(a^x)'
=lim(h->0) [a^(x+h) - a^x]/h
=lim(h->0) a^x*[a^h - 1]/h
① ∵ (h->0) [a^h - 1] h*lna
=lim(h->0) a^x*[h*lna]/h
= a^x*lna
② ∵ 令:t=[a^h - 1] 则:h->0 时,t->0,h=ln(1+t)] *(1/lna )
=lim(t->0) a^x* t/[ln(1+t)] *1/lna ]
=lim(t->0) a^x*lna* t/ln(1+t)
= a^x*lna
(loga x)' (x>0)
=[(1/lna)*lnx]'
=(1/lna)*[lnx]'
=(1/lna)* lim(h->0) [ln(x+h) - lnx]/h
=(1/lna)* lim(h->0) [ln(1+h/x)]/h
∵ (h->0时,h/x ->0 ,ln(1+h/x) h/x
=(1/lna)* lim(h->0) [h/x]/h
= 1/lna*(1/x)
= 1/xlna
=lim(h->0) [a^(x+h) - a^x]/h
=lim(h->0) a^x*[a^h - 1]/h
① ∵ (h->0) [a^h - 1] h*lna
=lim(h->0) a^x*[h*lna]/h
= a^x*lna
② ∵ 令:t=[a^h - 1] 则:h->0 时,t->0,h=ln(1+t)] *(1/lna )
=lim(t->0) a^x* t/[ln(1+t)] *1/lna ]
=lim(t->0) a^x*lna* t/ln(1+t)
= a^x*lna
(loga x)' (x>0)
=[(1/lna)*lnx]'
=(1/lna)*[lnx]'
=(1/lna)* lim(h->0) [ln(x+h) - lnx]/h
=(1/lna)* lim(h->0) [ln(1+h/x)]/h
∵ (h->0时,h/x ->0 ,ln(1+h/x) h/x
=(1/lna)* lim(h->0) [h/x]/h
= 1/lna*(1/x)
= 1/xlna
求f(x)=(a-2)ln(-x)+ 1/x+ 2ax的导数,
f(x)=(a-2)ln(-x)+1/x+2ax的导数
判断并证明f(x)=log(a)1-x/1+x ,(a>0,a≠1)的单调性,用函数知识求,不要用导数
f(x)=|log(a)(x)-1|+|2log(a)(x)|,求使f(x)<2的x范围,
证明函数图象关于y=x对称 f(x)=log(a)(a-a^x) 且a>1
基本初等导数公式的推导f(x)=log(a*x)则f'(x)=1/(x.lna)
f(x)=(1-x)e^x-a的导数
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,
证明f(x+a)=-f(x+a)为周期函数
f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a
已知f(x)=ln(2x+1),若f(x)+f(x)的导数=a有解,求a的取值范围
已知函数f(x)=ax-ln(-x),x属于【-e,0),其中e是自然对数底数.当a=-1时证明f(x)+ln(-x)/