一道较难不等式竞赛题a,b,c>0且abc≤1,求证1/a+1/b+1/c≥1+6/(a+b+c)
一道不等式证明题已知a,b,c>0,且ab+bc+ca=1.求证:[(1/a)+6b]^(1/3)+[(1/b)+6c]
不等式证明 abc=1,求证a+b+c+1/a+1/b+1/c
不等式 爆难证明正实数abc=1求证(a+b)/c +(b+c)/a +(c+a)/b +6≥4(a+b+c)说得好一定
均值不等式问题,已知a,b,c属于R,且a/(b+c)=b/(a+c)-c/(a+b),证明b/(a+c)≥(√17-1
已知abc为正数,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc
已知abc属于正实数 且abc=1 求证(a+b)(b+c)(c+a)≥8
在三角形ABC中,角A、B、C的对边分别为a、b、c,且A+C≤2B.(1)求证:B≥π/3;(2)求证:a+c≤2b.
已知a,b,c属于R,a,b,c 互不相等且abc=1,求证:根a+根b+根c《1/a+1/b+1/c
用柯西不等式解这道题a,b,c∈R+,且a+b+c=1求证a²+b²+c²≥1/3
一道均值不等式问题已知a.b.c均为正数,且a b c=1,求证1/(a b) 1(b c) 1/(c a)大于等于9/
已知a,b,c都是实数,且a+b+c=0,abc=1,求证a,b,c中有且只有一个数大于3/2
不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+