作业帮 > 数学 > 作业

设S=(√1+1/1+1/2)+(√1+1/2+1/3)+……+(√1+1/2009+1/2010) (1).根据前面9

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 00:57:33
设S=(√1+1/1+1/2)+(√1+1/2+1/3)+……+(√1+1/2009+1/2010) (1).根据前面9个加式化简的结果的规律,推测最后一个加式的值.(2).证明2009<S<2010
设S=(√1+1/1+1/2)+(√1+1/2+1/3)+……+(√1+1/2009+1/2010) (1).根据前面9
(1)(2009*2010+1)/(2009*2010) (2)设S为数列an的和 an=[n(n+1)+1]/n(n+1)=1+1/n(n+1) S=2009+1/2+1/6+...+1/2009*2010>200 再用裂项相消S=2009+1-1/2+1/2-1/3+...+1/2009-1/2010