设点P(x0,y0)为直线x+3y-6=0上的点,若在圆O:x^2+y^2=3上存在点Q,使角OPQ=60度(O为坐标原
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 23:45:18
设点P(x0,y0)为直线x+3y-6=0上的点,若在圆O:x^2+y^2=3上存在点Q,使角OPQ=60度(O为坐标原点)
则x0的取值范围是?
为什么要求OP〈=2,才存在角OPQ=60度?
则x0的取值范围是?
为什么要求OP〈=2,才存在角OPQ=60度?
分析:圆O外有一点P,圆上有一动点Q,∠OPQ在PQ与圆相切时取得最大值.如果OP变长,那么∠OPQ可以获得的最大值将变小.因为sin∠OPQ= ,QO为定值,即半径,PO变大,则sin∠OPQ变小,由于∠OPQ∈(0,),所以∠OPQ也随之变小.可以得知,当∠OPQ=60,且PQ与圆相切时,PO=2,而当PO>2时,Q在圆上任意移动,∠OPQ<60恒成立.因此,P的取值范围就是PO≤2,即满足PO≤2,就能保证一定存在点Q,使得∠OPQ=60°,否则,这样的点Q是不存在的.
由分析可得:PO2=x02+y02
又因为P在直线L上,所以x0=-(3y0-6)
故10y02-36y0+3≤4
解得即x0的取值范围是 ,
故答案为 [0,6/5]
由分析可得:PO2=x02+y02
又因为P在直线L上,所以x0=-(3y0-6)
故10y02-36y0+3≤4
解得即x0的取值范围是 ,
故答案为 [0,6/5]
已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,P,Q中点为M(x0,y0),且y0>x0+2,求y0/
点P在直线X+3Y-1=0上,点Q在直线X+3Y+3=0上,PQ的中点M(X0,Y0) 且 Y0>X0+2 则Y0/X0
(2014•甘肃二模)已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,PQ的中点为M(x0,y0),且y
已知在平面直角坐标系中,点Q 的坐标为(4,0),点P是直线y=-2x+3上在第一象限内的一点。设三角形OPQ的面积为S
若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x0,y0),且满足(x
若动点P在直线L1:X-Y-2=0上,动点Q在直线L2:X-Y-6=0上,设线段PQ的中点为M(X0,Y0),且 (X0
已知在平面直角坐标系中,点Q的坐标为(4,0),点P是直线y=-1/2x+3上在第一象限内的一点,设△OPQ的面积为S
如图,P为函数y=4/3x图像上的一个动点,圆P的半径为3,设点P的坐标为(x,y) ⊙O是以坐标原点O为圆心,
点P(x0,y0)在圆O:x^2+y^2=r^2内,则直线x0x+y0y=r^2与已知圆O的公共点的个数为o,为什么?求
过曲线y=x^3-x^2上点P(x0,y0) (x0>0)处的切线斜率为8,则此切线方程为
如图,P为正比例函数y=3/2×x图象上的一个动点,圆P的半径为3,设点P的坐标为 (x,y) (1)求圆P与直线x
已知PQ两点关于x轴对称且点P在双曲线y=2/x上,点Q在直线y=x+4上设点P的坐标为(a,b)