作业帮 > 数学 > 作业

不定积分1/(x-a)^2(x-b)^2

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 04:51:10
不定积分1/(x-a)^2(x-b)^2
不定积分1/(x-a)^2(x-b)^2
=1/[(x-a)(x-b)]²=[1/(x-a)-1/(x-b)]²/(a-b)²={1/(x-a)²+1/(x-b)²-2/[(x-a)(x-b)]}/(a-b)²
={1/(x-a)²+1/(x-b)²-2/[(x-a)(a-b)]+2/[(x-a)(a-b)]}/(a-b)²;
∫dx/[(x-a)(x-b)]²=∫dx{1/(x-a)²+1/(x-b)²-2/[(x-a)(a-b)]+2/[(x-a)(a-b)]}/(a-b)²
=1/(a-x)+1/(b-x)-2(ln|x-a|)/(a-b)³+2(ln|x-b|)/(a-b)³;