若x>1时,lnx+(2/x+1)>1,求证 ln(n+1)>1/3+1/5+1/7+.+1/2n+1(n为正整数)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 19:15:03
若x>1时,lnx+(2/x+1)>1,求证 ln(n+1)>1/3+1/5+1/7+.+1/2n+1(n为正整数)
证明:
考虑函数f(x)=ln(1+1/x)-1/(2x+1),x>0.显然当x->+∞时,f(x)=0.
而f'(x)=-1/[n*(n+1)]+2/[(2n+1)^2]=1/(2n^2+2n+1/2)-1/(n^2+n)=-(n^2+n+1/2)/[(2n^2+2n+1/2)*(n^2+n)]=-[(n+1/2)^2+1/4]/[(2n^2+2n+1/2)*(n^2+n)]0时为单调递减函数,则必有x>0时f(x)=ln(1+1/x)-1/(2x+1)>0,于是有ln(1+1/x)>1/(2x+1),也即当x>0时,有
ln(x+1)-lnx>1/(2x+1)成立.于是
ln2-ln1>1/3
ln3-ln2>1/5
ln4-ln3>1/7
……
lnn-ln(n-1)>1/(2n-1)
ln(n+1)-lnn>1/(2n+1)
前述不等式左右两边分别相加,便得
ln(n+1)>1/3+1/5+1/7+…+1/(2n +1)
考虑函数f(x)=ln(1+1/x)-1/(2x+1),x>0.显然当x->+∞时,f(x)=0.
而f'(x)=-1/[n*(n+1)]+2/[(2n+1)^2]=1/(2n^2+2n+1/2)-1/(n^2+n)=-(n^2+n+1/2)/[(2n^2+2n+1/2)*(n^2+n)]=-[(n+1/2)^2+1/4]/[(2n^2+2n+1/2)*(n^2+n)]0时为单调递减函数,则必有x>0时f(x)=ln(1+1/x)-1/(2x+1)>0,于是有ln(1+1/x)>1/(2x+1),也即当x>0时,有
ln(x+1)-lnx>1/(2x+1)成立.于是
ln2-ln1>1/3
ln3-ln2>1/5
ln4-ln3>1/7
……
lnn-ln(n-1)>1/(2n-1)
ln(n+1)-lnn>1/(2n+1)
前述不等式左右两边分别相加,便得
ln(n+1)>1/3+1/5+1/7+…+1/(2n +1)
已知函数f(x)=lnx 求证:当i从1到n时,1/i的总和大于ln(1+n) (n为正整数)
已知函数f(x)=lnx+a/(x+1)(a属于R),求证ln(n+1)>1/3+1/5+1/7+...+1/(2n +
对于任意正整数n,求证:ln(1/2+1/n)>1/n^2-2/n-1
求极限(1). lim(x-o) ln(sinx/x) (2). lim(n->∞){x[ln(x+a)-lnx]}
证明对任意正整数n,不等式ln(1/n+1)>1/n^2-1/n^3
已知f(x)=1-a/x-lnx 当n≥3时 求证ln(n/3+1/3)<1/3+1/4+...
已知函数y=1-x/ax+lnx.a=1.求证.对大于1的任意正整数N.都有lnN>1/2+1/3+...+1/N
已知x>1,求证:x>ln(1+n).
n为正整数,f(n)为正整数,f(n)为n的增函数.f[f(n)]=2n+1,求证:4/3
用数学归纳法求证,当1-(x+3)^n时,(n是正整数) 能被X+2整除
对于式子x^n - 2*(x-1)^n (1)其中,x 是正整数,x ≥ 1,n 也是正整数,n ≥ 2当 n ≥ 3
计算:1:(1) (-x)^2n×(-2^2n)×(-x)^2n+1,2n为正整数(2) (-x)^2n×(-2^2n)