如何证明被椭圆截得的直线的线段的中点在同一直线上
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/07 04:42:15
如何证明被椭圆截得的直线的线段的中点在同一直线上
已知一个椭圆x平方/4+y平方/9=1,一组平行直线的斜率是 1.5
(1)这组直线何时与椭圆相交
(2)当它们与椭圆相交时,证明这些直线被椭圆截得的线段的中点在一条直线上
已知一个椭圆x平方/4+y平方/9=1,一组平行直线的斜率是 1.5
(1)这组直线何时与椭圆相交
(2)当它们与椭圆相交时,证明这些直线被椭圆截得的线段的中点在一条直线上
答:
你的题目应该这样说:一组平行线与椭圆相交,每条都在椭圆内截成一条线段,求证:这些线段的中点共线?
这样证明:
设这组平行线形如Ax + By + C = 0,易知这些平行线只是C不同而已.
设椭圆方程是:x²/a² + y²/b² = 1,即:
b²x² + a²y² = a²b²
b²B²x² + a²B²y² = a²b²B²
b²B²x² + a²(Ax + C)² = a²b²B²
b²B²x² + a²A²x² + 2ACa²x + a²C² - a²b²B² = 0
(b²B² + a²A²)x² + 2ACa²x + a²C² - a²b²B² = 0
x1 + x2 = -2ACa²/(a²A² + b²B²)
同理:
y1 + y2 = -2BCb²/(a²A² + b²B²)
设线段中点坐标是(X,Y),则:
x1 + x2 = 2X
y1 + y2 = 2Y
所以:
X = -ACa²/(a²A² + b²B²)
Y = -BCb²/(a²A² + b²B²)
Y/X = Bb²/Aa²
Y = Bb²/Aa² X
Y = (B/A) * (b²/a²) X
中点的轨迹是直线方程且通过原点.与C无关说明这些线段的中点轨迹方程都是一样的.
---------------------------------------
你具体问题中说斜率是1.5,相当于本题中A/B = - 3/2,那B/A = -2/3,b²/a²=9/4
y = -2/3 * 9/4 x
y = -3/2 x
y = -1.5 x
(不要误会哟,1.5完全是巧合,斜率不是相反数的关系,跟椭圆半轴有关哟)
---------------------------------------
最后告诉你,只要把b² 换成-b²,还适用于双曲线.不过要判断(A²a² - B²b² ≠0)
双曲线的情况是:y = -(B/A)*(b²/a²) x
---------------------------------------------
你的题目应该这样说:一组平行线与椭圆相交,每条都在椭圆内截成一条线段,求证:这些线段的中点共线?
这样证明:
设这组平行线形如Ax + By + C = 0,易知这些平行线只是C不同而已.
设椭圆方程是:x²/a² + y²/b² = 1,即:
b²x² + a²y² = a²b²
b²B²x² + a²B²y² = a²b²B²
b²B²x² + a²(Ax + C)² = a²b²B²
b²B²x² + a²A²x² + 2ACa²x + a²C² - a²b²B² = 0
(b²B² + a²A²)x² + 2ACa²x + a²C² - a²b²B² = 0
x1 + x2 = -2ACa²/(a²A² + b²B²)
同理:
y1 + y2 = -2BCb²/(a²A² + b²B²)
设线段中点坐标是(X,Y),则:
x1 + x2 = 2X
y1 + y2 = 2Y
所以:
X = -ACa²/(a²A² + b²B²)
Y = -BCb²/(a²A² + b²B²)
Y/X = Bb²/Aa²
Y = Bb²/Aa² X
Y = (B/A) * (b²/a²) X
中点的轨迹是直线方程且通过原点.与C无关说明这些线段的中点轨迹方程都是一样的.
---------------------------------------
你具体问题中说斜率是1.5,相当于本题中A/B = - 3/2,那B/A = -2/3,b²/a²=9/4
y = -2/3 * 9/4 x
y = -3/2 x
y = -1.5 x
(不要误会哟,1.5完全是巧合,斜率不是相反数的关系,跟椭圆半轴有关哟)
---------------------------------------
最后告诉你,只要把b² 换成-b²,还适用于双曲线.不过要判断(A²a² - B²b² ≠0)
双曲线的情况是:y = -(B/A)*(b²/a²) x
---------------------------------------------
已知椭圆X^2/4+Y^2/9=1,一组平行直线的斜率是3/2,当直线与椭圆相交时,证明这些直线被椭圆截得的线段的中点在
直线经过点(-2,4),被两坐标轴截得的线段的中点在直线X+Y-1=0上,求直线L的方程
和椭圆有关的数学题若椭圆方程如下,且已知一组平行直线的斜率是3/2求:当它们与椭圆相交时,这些直线被椭圆截得的线段的中点
如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等,这句话如何理解?
中心在原点,一个焦点(0,2)的椭圆被直线l:y=2x-1截得的弦的中点在直线4x-1=0上,求此椭圆方程,
已知椭圆的左焦点为F过椭圆的直线交椭圆于AB两点并且线段AB的中点在直线x+y=0上求直线AB方程
数学上三角形三心在同一直线上的欧拉定理如何证明
已知中心在原点,长轴在x轴上的椭圆的两准线距离为2,若椭圆被直线x+y+1=0截得的弦中点的横坐标为-2/3,求椭圆方程
关于理科的问题1.已知点P(4,2)是直线L被椭圆X2/36+Y2/9=1所截得的线段的中点.求直线L方程2.椭圆x2/
椭圆x2/2+y2=1的左焦点为F,过点P的直线交椭圆与A,B两点并且线段AB的中点在直线x+y=0上,求直线AB的方程
若点p(-1.3)是直线l被两坐标轴截得的线段的中点,求直线的方程.
已知中心在原点,长轴在x轴上的椭圆的两准线间的距离为2根号3,若椭圆被直线x y 1截得的弦的中点的横坐...