关于多项式除法的问题!急,就算只懂一条也不要紧,回答至少一条也可以!
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 02:01:10
关于多项式除法的问题!急,就算只懂一条也不要紧,回答至少一条也可以!
当被除数(Dividend) = 2x³-3x²+x+4 ,商式(Quotient) = 2x-1 ,馀数(Remainder) = 2x+3
找出其除数(divisor)
2.6x³+x²+mx+n 被 2x-1 除,m 和 n 是整数.而 商式(Quotient) = 3x²+2x+1 , 馀数(Remainder) = 2
找出 m 和 n 的数值.
就算只懂一条也不要紧,回答至少一条也可以!
当被除数(Dividend) = 2x³-3x²+x+4 ,商式(Quotient) = 2x-1 ,馀数(Remainder) = 2x+3
找出其除数(divisor)
2.6x³+x²+mx+n 被 2x-1 除,m 和 n 是整数.而 商式(Quotient) = 3x²+2x+1 , 馀数(Remainder) = 2
找出 m 和 n 的数值.
就算只懂一条也不要紧,回答至少一条也可以!
1、除数(divisor)=[被除数(Dividend) -馀数(Remainder)]÷商式(Quotient)
=[(2x³-3x²+x+4)-(2x+3)]÷(2x-1)=(2x³-3x²-x+1)÷(2x-1)=(x²-x-1)(2x-1)÷(2x-1)=x²-x-1
所以,其除数(divisor)是:x²-x-1
2、被除数(Dividend)=除数(divisor)×商式(Quotient)+馀数(Remainder)
=(2x-1)×(3x²+2x+1)+2
=(6x³+4x²+2x-3x²-2x-1)+2
=(6x³+x²-1)+2
=6x³+x²+1
因为被除数(Dividend)是:6x³+x²+mx+n
所以,m=0,n=1
再问: (2x³-3x²-x+1)=(x²-x-1)(2x-1) 请问这里怎么得出的?先谢谢了!!你真强大
再答: 这是分解因式:2x³-3x²-x+1=2x³-(x²+2x²)+(x-2x)+1=2x³-x²-2x²+x-2x+1=(2x³-x²)-(2x²-x)-(2x-1) =x²(2x-1)-x(2x-1)-(2x-1)=(x²-x-1)(2x-1) 其实,如果你会竖式除法的话,可不必这样做,直接用竖式除法将2x³-3x²-x+1除以2x-1即得到x²-x-1。
=[(2x³-3x²+x+4)-(2x+3)]÷(2x-1)=(2x³-3x²-x+1)÷(2x-1)=(x²-x-1)(2x-1)÷(2x-1)=x²-x-1
所以,其除数(divisor)是:x²-x-1
2、被除数(Dividend)=除数(divisor)×商式(Quotient)+馀数(Remainder)
=(2x-1)×(3x²+2x+1)+2
=(6x³+4x²+2x-3x²-2x-1)+2
=(6x³+x²-1)+2
=6x³+x²+1
因为被除数(Dividend)是:6x³+x²+mx+n
所以,m=0,n=1
再问: (2x³-3x²-x+1)=(x²-x-1)(2x-1) 请问这里怎么得出的?先谢谢了!!你真强大
再答: 这是分解因式:2x³-3x²-x+1=2x³-(x²+2x²)+(x-2x)+1=2x³-x²-2x²+x-2x+1=(2x³-x²)-(2x²-x)-(2x-1) =x²(2x-1)-x(2x-1)-(2x-1)=(x²-x-1)(2x-1) 其实,如果你会竖式除法的话,可不必这样做,直接用竖式除法将2x³-3x²-x+1除以2x-1即得到x²-x-1。
不要骄傲自满的谚语急 至少一条
写一个关于负面情绪的作文开头,50字左右,多了也不要紧,要用上景物描写,急.
一条关于铜的精炼的问题
一条关于点线面的数学问题
一条关于数学函数的问题
(急)一条关于爱的名言. 谢谢
初二物理下学期,关于电学的一条问题(急求!) 题目如下:
两道关于一元多项式的除法的数学题. 初一数学题 急啊! 过程和根据!
阅读《通往广场的路不止一条》回答问题
7、8、9怎么写?就算只能回答一个问题也没关系的,
山谷风形成的一些问题为啥山谷和山顶不是一条等压线,也不在同一平面,却可以使风从山谷吹向山顶?
关于示波器的使用问题当示波器的输入端加上正弦电压后,若示波器的荧光屏上只看到一条垂直亮线,可能是什么问题?若只看到一条水