已知函数f(x)=lnx-ax+(1-a)/x-1,(a属于R),设g(x)=x?-2bx+4
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:58:26
已知函数f(x)=lnx-ax+(1-a)/x-1,(a属于R),设g(x)=x?-2bx+4
求当a=1/4时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2).求实数b的取值范围.分析,举一反三
求当a=1/4时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2).求实数b的取值范围.分析,举一反三
其实这类型的题最难的是对题目的解析.题中的“任意”和“存在”两个词表明了对x除了取值范围外不加限制.也就是说只要有x1和x2能满足f(x1)>=g(x2)就好.也就是说只要f(x1)在(0,2)的最小值 大于等于 g(x2)在[1,2]的最小值就好.只要搞明白了这个,剩下的任务就是求函数在特定区间的最小值的问题了.我想对于你来说这个并不难.如果你不太明白的话,我可再提醒两句:g(x)这类函数在特定区间内的最小值好做,只要把g(x)变形成 m(x+n)^2+p 的形式就行.对于f(x)这类较复杂的函数来说,求最小值就要用最基础的办法:查看导数甚至二阶导数在给定的取值范围的情况,然后找到f(x)的变化规律,从而得出最小值.我想这一部分是这道题的考察重点:复杂函数在给定区间的变化规律.剩下的详解我就不做了.太麻烦.:) 你做完之后还可以试着把题目改改,比如把大于等于改成小于等于;把g(x)搞的复杂些;把f(x)搞的复杂些.你也可以把这道题目改成另一类题目:不要区分x1和x2:就看x在(0,2).这样就变成了看新函数f(x)-g(x)在(0,2)的值的情况了.
已知函数f(x)=lnx+a/x,g(x)=x,F(x)=f(1+e的x次方)-g(x),x属于R
设函数f(x)=(2-a)lnx+1/x+2ax.(a∈R)
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)={f(x),x>0 -f(x),x
已知函数f(x)=x+ax(a∈R),g(x)=lnx
已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知函数f(x)=lnx+ax2-2bx(a,b∈R),g(x)=2x−2x+1-clnx.
已知函数f(x)=ax^2+x^2+bx (a.b属于R) g(x)=f(x)+f“(x)是奇函数 (1)求f(x)的表
已知函数f(X)=ax^2+2lnx,(a属于R),讨论函数f(X)的单调性
设函数f(x0=-1/x,g(x)=ax^2+bx(a.b属于R,a不等于0)若y=f(x)的图像与y=g(x)的图像有
已知函数f(x)=1/2x^2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)=3x,其中a∈R且
已知函数f(x)=lnx+a/(x+1),(a属于R)
已知函数f(x)=ax^2+bx+1(x,a,b属于R)【高一数学单调性】