根号(x2—1)的不定积分
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 17:16:38
根号(x2—1)的不定积分
∫√(x^2-1)dx =∫tanx * secx*tanxdx (第二类换元法:x=sect,t属于<0,π/2))
=∫sect(sect*sect-1)dt=∫sect*sect*sectdt-∫sectdt=∫sectdtant-∫sectdt
=secttant-∫tant*tant*sectdt-∫sectdt
即∫√(x^2-1)dx =∫tant * sect*tantdt= secttant-∫tant*tant*sectdt-∫sectdt
将等式右边的∫tant*tant*sectdt移到左边:
∫√(x^2-1)dx =∫tant * sect*tantdt=1/2 secttant-1/2∫sectdt
=1/2 secttant-1/2ln⁄sect+tant⁄+c=1/2x√(x^2-1)-1/2ln(x+√(x^2-1))+c
=∫sect(sect*sect-1)dt=∫sect*sect*sectdt-∫sectdt=∫sectdtant-∫sectdt
=secttant-∫tant*tant*sectdt-∫sectdt
即∫√(x^2-1)dx =∫tant * sect*tantdt= secttant-∫tant*tant*sectdt-∫sectdt
将等式右边的∫tant*tant*sectdt移到左边:
∫√(x^2-1)dx =∫tant * sect*tantdt=1/2 secttant-1/2∫sectdt
=1/2 secttant-1/2ln⁄sect+tant⁄+c=1/2x√(x^2-1)-1/2ln(x+√(x^2-1))+c