设A1=(2 3 1 0)' A2=(1 k 1 0)'是某其次方程组的一个解系.且X=(8 5 3 0)是一个解向量
设n阶方阵A的秩为n-1,a1,a2,是齐次线性方程组Ax=0的两个不同的解向量,则x=0的通解为什么是k(a1-a2)
四元非齐次线性方程组的系数矩阵的秩为3,且a1,a2,a3,是他的解向量,a1=(2 0 5 -1),a2+a3=(2
设a1,a2,a3是AX=0的基础解系,则该方程组的基础解系是否可以表示成a1,a2,a3的一个等价向量组?如何证明
设a1,a2,a3是AX=0的基础解系,则该方程组的基础解系是否可以表示成a1,a2,a3的一个等秩向量组?
设a1.a2.a3是方程组AX=0的基础解系,向量组a1.a2.a3的秩为.
设A是n阶方阵,a1、a2是其次线性方程组AX=0的两个不同解向量,则|A|=----拜求!
设a1,a2,a3,a4为四维向量,A=(a1,a2,a3,a4)已知通解X=k(1,0,1,0)^T ,求向量组的a1
已知A1,A2,A3是三元非其次线性方程组AX=B的三个解,且R(A)=2,A1=(1,1,1,),A2+3A3=(3,
设4元非齐次线性方程组的系数矩阵的秩为3,已知a1 a2 a3 是它的3个解向量,且a1=(2 3 4 5) a2+a1
设β1,β2是非其次线性方程组AX=b的两个不同解,a1,a2,a3是对应齐次线性方程组AX=0的基础解系,求AX=b通
设β1,β2是非其次线性方程组AX=b的两个不同解,a1,a2,a3是对应齐次线性方程组AX=0的基础解系
设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,若a1=[1,2,3,4]^T ,a2+a