极限题:lim[n*tan(1/n)]^(n^2) (n趋于无穷)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/21 01:48:25
极限题:lim[n*tan(1/n)]^(n^2) (n趋于无穷)
把数列的极限化成函数的极限
lim{[n*tan(1/n)]^(n^2),n→∞}
=lim[(tanx/x)^(1/x^2),x→0]
函数式取对数后的极限
lim{ln[(tanx/x)^(1/x^2)],x→0}
=lim[(lntanx-lnx)/x^2,x→0]
=lim[(2/sin2x-1/x)/(2x),x→0]
=lim[(x-sin2x/2)/(x^2sin2x),x→0]
=lim[2x/(sin2x),x→0]lim[(x-sin2x/2)/(2x^3),x→0]
=1*lim[(1-cos2x)/(6x^2),x→0]
=lim[(2(sinx)^2)/(6x^2),x→0]
=1/3
所以
lim[(tanx/x)^(1/x^2),x→0]
=lim{e^ln[(tanx/x)^(1/x^2)],x→0]
=e^(1/3)
即
lim{[n*tan(1/n)]^(n^2),n→∞}=e^(1/3)
lim{[n*tan(1/n)]^(n^2),n→∞}
=lim[(tanx/x)^(1/x^2),x→0]
函数式取对数后的极限
lim{ln[(tanx/x)^(1/x^2)],x→0}
=lim[(lntanx-lnx)/x^2,x→0]
=lim[(2/sin2x-1/x)/(2x),x→0]
=lim[(x-sin2x/2)/(x^2sin2x),x→0]
=lim[2x/(sin2x),x→0]lim[(x-sin2x/2)/(2x^3),x→0]
=1*lim[(1-cos2x)/(6x^2),x→0]
=lim[(2(sinx)^2)/(6x^2),x→0]
=1/3
所以
lim[(tanx/x)^(1/x^2),x→0]
=lim{e^ln[(tanx/x)^(1/x^2)],x→0]
=e^(1/3)
即
lim{[n*tan(1/n)]^(n^2),n→∞}=e^(1/3)
求极限,lim(1+n)(1+n^2)(1+n^4)-----(1+n^2n)=?(n趋于无穷)
lim(n趋于无穷)[n(n+1)/2]/n方+3n的极限是多少?
求极限 Lim(n趋于无穷)(n^(2/3) sinn^2)/(n-1)
求极限:lim((2n∧2-3n+1)/n+1)×sin n趋于无穷
lim(n->无穷) (tan(pi/4 + 1/n)) ^n的极限 为什么是 e^2
Lim(1-3/2n)^4n+5.n趋于无穷,求极限
求极限 lim n趋于无穷 3n²+2n-1/2n²+n-10
高数求极限 2^n*n!(/n^n) n趋于无穷?
lim(n趋于正无穷)∑(下面k=1,上面n)(k/n^3)√(n^2-k^2),此题利用定积分求极限,
lim n趋于无穷(2n+3/2n+1)的n+1次方的极限怎么求
lim[1/n-1/(n+1)+1/(n+2)-1/(n+3)+...+1/(2n-1)-1/2n] n趋于无穷的极限
当n趋于无穷时,tan(π/a+1/n)^n的极限