作业帮 > 数学 > 作业

极限题:lim[n*tan(1/n)]^(n^2) (n趋于无穷)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/21 01:48:25
极限题:lim[n*tan(1/n)]^(n^2) (n趋于无穷)
极限题:lim[n*tan(1/n)]^(n^2) (n趋于无穷)
把数列的极限化成函数的极限
lim{[n*tan(1/n)]^(n^2),n→∞}
=lim[(tanx/x)^(1/x^2),x→0]
函数式取对数后的极限
lim{ln[(tanx/x)^(1/x^2)],x→0}
=lim[(lntanx-lnx)/x^2,x→0]
=lim[(2/sin2x-1/x)/(2x),x→0]
=lim[(x-sin2x/2)/(x^2sin2x),x→0]
=lim[2x/(sin2x),x→0]lim[(x-sin2x/2)/(2x^3),x→0]
=1*lim[(1-cos2x)/(6x^2),x→0]
=lim[(2(sinx)^2)/(6x^2),x→0]
=1/3
所以
lim[(tanx/x)^(1/x^2),x→0]
=lim{e^ln[(tanx/x)^(1/x^2)],x→0]
=e^(1/3)

lim{[n*tan(1/n)]^(n^2),n→∞}=e^(1/3)