若数列{bn}等差,且bn=Sn/(n+c),求非零常数c
由通项公式bn=sn/(n+c)构造一个新的数列{bn},若{bn}也是等差数列,求非零常数c
等差数列前n项和为Sn且a3a4=117,a2+a5=22,求通项an 若等差数列bn=Sn/(n+c),求非零常数c
设数列bn的前n项和为Sn.且bn=2-2Sn.数列an为等差数列,a5=14.a7=20.求数列bn通项公式.2,若c
已知数列{an}的前n项和为sn=3n^2+5n,数列{bn}中,b1=8,64【b(n+1)】-bn=0,且存在常数c
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.
已知数列的前n项和Sn=2n^2+2n,数列bn的前n项和Tn=2-bn,设cn=an*bn,证明:当且仅当n>=3时c
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数n都成立.(1)若数列
数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.若数列{an}为
已知数列an的通项为an,前n项和为Sn,且an是Sn与2的等差中项;数列bn中,b1=1,点P(bn,bn+1)在直线
已知数列an前N项和为sn,点(n,sn)都在函数f(x)=2x^2-x上,设bn=sn/(n+p),且数列bn是等差数
数列{an}的前n项和为Sn,存在常数ABC,使得an+Sn=An^2+Bn+C对任意正整数都成立
已知等差数列an,前n项和Sn,且a3>a2,a2a3=45,a1+a4=14.(1)bn=Sn/(n+c),若bn