作业帮 > 数学 > 作业

求最小正周期f(x)=sin(2x+π/3)-根号3sin平方x+sinxcosx+(根号3)/2

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 08:06:15
求最小正周期
f(x)=sin(2x+π/3)-根号3sin平方x+sinxcosx+(根号3)/2
求最小正周期f(x)=sin(2x+π/3)-根号3sin平方x+sinxcosx+(根号3)/2
f(x)=sin(2x+π/3) -√3sin²x+sinxcosx+√3/2
=sin2xcos(π/3)+cos2xsin(π/3)-√3sin²x+sinxcosx+√3/2
=(1/2)sin2x +(√3/2)cos2x-√3sin²x+sinxcosx+√3/2
=sinxcosx+√3cos²x-√3/2-√3sin²x+sinxcosx+√3/2
=2sinxcosx+√3cos2x
=sin2x+√3cos2x
=2[(1/2)sin(2x)+(√3/2)cos(2x)]
=2[sin(2x)cos(π/3)+cos(2x)sin(π/3)]
=2sin(2x+π/3)
T=2π/2=π