关于导数与连续的问题若f(x)在(a,b)上连续且可导,那么f'(x)在(a,b)上可导吗?若不可导,举出反例.
设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否连续?怎么证明?或反例?
设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否有界?怎么证明?或反例?
设f(x)在区间[a,b]上连续,在(a,b)可导,
证明:若f(x)在(a,b)可导且其导数有界,则f(x)在(a,b)必一致连续
若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.
关于导数的一道题f(x)连续,且x=0处的导数大于零,那么存在一个数a,使得A.f(x)在(0,a)内单调递增 B.f(
f(x)在[a,b]上连续,在(a,b)可导,且在(a,b)内f(x)的二阶导数小于0,证明f(x)是单调递减的 是知道
方程导数根的判定若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f'
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
f(x)在[a,b]上可导,f(x)的导数是否在[a,b]上连续
设f(x)在[a,b]上连续,在(a,b)可导,且f(a)=f(b)=0,证明存在c属于(a,b),使f'(c)+f(c
设f(x)在区间[a,b]上连续,且f(x)>0,证明 f(x)在[a,b]上的导数 乘 1/f(x)在[a,b]上的导