已知a^2=3a-1,则2a^5-5a^4+2a^3-8a^2/a^2+1的值为?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 18:37:38
已知a^2=3a-1,则2a^5-5a^4+2a^3-8a^2/a^2+1的值为?
2a^5-5a^4+2a^3-8a^2/a^2+1
=2a^5-5a^4+2a^3-8a+1
=a^2(2a^3-5a^2+2a)-8a+1
=(3a-1)[2a(3a-1)-5(3a-1)^2+2a(3a-1)]-8a+1
=(3a-1)[6a^2-2a-5(9a^2-6a+1)+6a^2-2a]-8a+1
=(3a-1)[18a-6-2a-45a^2+30a-5+18a-6-2a]-8a+1
=(3a-1)[62a-135a+45-17]-8a+1
=(3a-1)[-73a+28}-8a+1
=-219a^2+73a+84a-28-8a+1
=149a-219(2a-1)-27
=149a-538a+219-27
=-390a+192
=2a^5-5a^4+2a^3-8a+1
=a^2(2a^3-5a^2+2a)-8a+1
=(3a-1)[2a(3a-1)-5(3a-1)^2+2a(3a-1)]-8a+1
=(3a-1)[6a^2-2a-5(9a^2-6a+1)+6a^2-2a]-8a+1
=(3a-1)[18a-6-2a-45a^2+30a-5+18a-6-2a]-8a+1
=(3a-1)[62a-135a+45-17]-8a+1
=(3a-1)[-73a+28}-8a+1
=-219a^2+73a+84a-28-8a+1
=149a-219(2a-1)-27
=149a-538a+219-27
=-390a+192
已知a^2+a+1=0,求1+a+a^2+a^3+a^4+a^5+a^6+a^7+a^8的值
已知1+a+a^2=0求1+a+a^2+a^3+a^4+a^5+a^6+a^7+a^8的值
已知1+a+a^2+a^3=0,求a+a^2+a^3+a^4+a^5+a^6+a^7+a^8+.+a^2008的值
已知a=5,求代数式(a-4)/(a^2-9)除以1/(a-3)乘以(a^2+2a-3)/(a^2-8a+16)的值
已知a^-2a-4=0 求 a-(a- 1/1-a)^乘a^-2a+1/a^-a+1×1/a^3-1的值
设A为4阶方阵,A*为A的伴随矩阵,已知|A|=1\2,则|3A^(-1)—2A*| 的值为
已知a是实数,且a^3+a^2+a+1=0,则a^2007+a^2008+a^2009+a^2010+a^2011的值是
已知a^2+3a+1=0求代数式3a^3+(a^2+5)(a^2-1)-5(a+1)(a-1)-6a的值
已知a=84,求代数式a-4/a^2-9/1/a-3*a^2+2a-3/a^2-8a+16的值
(a+3a+5a+...+2009a)-(2a+4a+6a+...+2008a)=
(a+3a+ 5a+```+2007a)-(2a+4a+6a+```+2008a)=?
(a+3a+5a+...+2013a)-(2a+4a+6a+...+2012a)=