作业帮 > 数学 > 作业

满足方程11x^2+2xy+9y^2+8x-12y+6=0的实数对(x,y)的个数有( )

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 05:20:05
满足方程11x^2+2xy+9y^2+8x-12y+6=0的实数对(x,y)的个数有( )
选项是A.1个 B.2个 C.3个 D.4个
满足方程11x^2+2xy+9y^2+8x-12y+6=0的实数对(x,y)的个数有( )
因为 11x^2+2xy+9y^2+8x-12y+6=0 有实数根
所以 11x^2 +2(y+4)x +(9y^2-12y+6)=0 的△≥0
即 4(y+4)^2 - 44*(9y^2-12y+6)≥0
解得:(7y-5)^2 ≤ 0 ,
所以 y = 5/7 (y有唯一的值)
故满足方程11x^2+2xy+9y^2+8x-12y+6=0的实数根对(x,y)的个数是1个.
应选择A
再问: 为什么从第四行的不等式可以得出一条等式? 小于等于号是怎么突然变成等号的= =
再答: 解得:(7y-5)^2 ≤ 0 , 而(7y-5)^2 ≥ 0 所以7y-5=0 y=5/7