作业帮 > 数学 > 作业

证明:对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 22:11:22
证明:对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立
已知f(x)=xlnx,g(x)=-x^2+ax-3
(1)求函数f(x)在[t,t+2](t>0)上的最小值
(2)对x∈(0,∞),不等式2f(x)≥g(x)恒成立,求实数a的取值范围
(3)证明对一切x∈(0,∞),都有lnx>[1/(e^x)-2/ex)]
证明:对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立
很通常的高考题,模型题.
(1):对f(x)求导数(注意定义域),然后对t分类讨论
(2)令h(x)=2f(x)-g(x),然后求h'(x),分类讨论h(x)最小值,h(x)min>=0就可以
(3)同样是令p(x)=lnx-(.)然后求导,讨论最小值.
三问是一个考察点..不像高考题..第三问应该是简化版的吧,后面应该会有一个很麻烦的不等式等着..(直觉)