在△ABC中,A,B,C分别为三个内角,a,b,c分别为三个内角的对边,已知2倍的根号2(sin^2 A-sin^2 C
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:29:07
在△ABC中,A,B,C分别为三个内角,a,b,c分别为三个内角的对边,已知2倍的根号2(sin^2 A-sin^2 C)=(a-b)sinB,△ABC外接圆的半径为根号2.
(1) 求角C的度数.
(2) 求△ABC面积S的最大值.
(1) 求角C的度数.
(2) 求△ABC面积S的最大值.
(1)由正弦定理得sinA=a/(2R),sinC=c/(2R),sinB=b/(2R),其中R为三角形外接圆的半径,
所以2根号2[a^2/(4R^2)-c^2/(4R^2)]=(a-b)b/(2R)
所以2根号2(a^2-c^2)=2根号2(a-b)b
所以a^2+b^2-c^2=ab,由余弦定理得cosC=(a^2+b^2-c^2)/2ab=ab/(2ab)=1/2
所以C=60度
(2)由正弦定理得c=2*根号2*sinC=根号6,所以a^2+b^2-ab=c^2=6
因为a^2+b^2-ab>=2ab-ab,所以a
所以2根号2[a^2/(4R^2)-c^2/(4R^2)]=(a-b)b/(2R)
所以2根号2(a^2-c^2)=2根号2(a-b)b
所以a^2+b^2-c^2=ab,由余弦定理得cosC=(a^2+b^2-c^2)/2ab=ab/(2ab)=1/2
所以C=60度
(2)由正弦定理得c=2*根号2*sinC=根号6,所以a^2+b^2-ab=c^2=6
因为a^2+b^2-ab>=2ab-ab,所以a
在三角形ABC中,三个内角A,B,C所对的边分别是a,b,c已知2B=A+C,a+根号2b=2c,求sin的值
已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,
高中正弦定理在△ABC中,三个内角A.B.C所对的边分别为a.b.c已知2B=A+C,a+根号2b=2c,求sinC的值
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,A是锐角,且根号3b=2asinB
在△ABC中,A、B、C分别是三角形的三个内角,C=30°,则sin²A+sin²B-2sinA·s
△ABC中,三个内角A、B、C所对的边分别为a、b、c,已知2B=A+C,a+根号2b=2c,求sinC的值.
已知三角形ABC三个内角A,B,C所对的边分别为a,b,c,A是锐角,且(根号3)b=2asinB
已知,a.b.c分别为△ABC三个内角A,B,C的对边,acosC+根号3倍的acosC-b-c=0
△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A= 根号2乘以a ,则 b/a=
已知△ABC的三个内角分别是A,B,C,且4sin^2 * B+C/2 - cos2A=7/2,求内角A的度数
在锐角三角形ABC中,已知内角A,B,C所对的边分别为a,b,c,向量m=(2sin(A+C),根号3),n=(cos2
在△ABC中,a,b,c分别表示三个内角A,B,C的对边,如果(a²+b²)sin(A-B)=