作业帮 > 数学 > 作业

方程①X²-2MX+M²-M=0②X²-(4M+1)X+4M²+M=0③4X&#

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 05:20:40
方程①X²-2MX+M²-M=0②X²-(4M+1)X+4M²+M=0③4X²-(12M+4)X+9M²+8M+12=0
求M的取值范围
方程①X²-2MX+M²-M=0②X²-(4M+1)X+4M²+M=0③4X&#
方程的判别式⊿≥0,方程才有实数根
① x²-2mx+m²-m=0
⊿=(-2m)²-4×1×(m²-m)
=4m²-4m²+4m
=4m
所以4m≥0,m≥0
② x²-(4m+1)x+4m²+m=0
⊿=[-(4m+1)]²-4×1×(4m²+m)
=16m²+8m+1-16m²-4m
=4m+1
所以4m+1≥0,m≥-1/4
③ 4x²-(12m+4)x+9m²+8m+12=0
⊿=[-(12m+4)]²-4×4×(9m²+8m+12)
=144m²+96m+16-144m²-128m-192
=-32m-176
所以-32m-176≥0,m≤ -11/2