f(x)=2cos(x+兀/3)[sin(x+兀/3)-√3cos(x+兀/3)] 若对任意x0,兀/6],使得m[f(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 23:16:56
f(x)=2cos(x+兀/3)[sin(x+兀/3)-√3cos(x+兀/3)] 若对任意x0,兀/6],使得m[f(x)+√3]+2恒成立、求实数m的取值范围?
f(x)=2cos(x+π/3)[sin(x+π/3)-√3cos(x+π/3)]
=4cos(x+π/3)[1/2sin(x+π/3)-√3/2cos(x+π/3)]
=4cos(x+π/3)[sin(x+π/3-π/3)]
=4[cosxcos(π/3)-sinxsin(π/3)]*sinx
=2(cosx-√3sinx)sinx
=2cosxsinx-2√3sin²x
=sin2x+√3cos2x-√3
=2sin(2x+π/3)-√3,在[0,π/6]上,f(x)∈[1-√3,2-√3]
m[f(x)+√3]+2=0恒成立,即[f(x)+√3]=-2/m恒成立,所以1
=4cos(x+π/3)[1/2sin(x+π/3)-√3/2cos(x+π/3)]
=4cos(x+π/3)[sin(x+π/3-π/3)]
=4[cosxcos(π/3)-sinxsin(π/3)]*sinx
=2(cosx-√3sinx)sinx
=2cosxsinx-2√3sin²x
=sin2x+√3cos2x-√3
=2sin(2x+π/3)-√3,在[0,π/6]上,f(x)∈[1-√3,2-√3]
m[f(x)+√3]+2=0恒成立,即[f(x)+√3]=-2/m恒成立,所以1
求导f(x) = cos(3x) * cos(2x) + sin(3x) * sin(2x).
函数f(x)=sin(x+兀/6)-cos(x+兀/3)的最小值
已知函数f(x)=cos(x-3/ 兀)-sin(2/兀-x).(1)求函数f(x)的最小值.
已知函数f(x0=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)
已知函数f(x)=cos(2x-兀/3)+2sin(x-兀/4)sin(x+兀/4).(1).求函数f(x)的最小正周期
已知f(x)= -1/2+sin(兀/6-2x)+cos(2x-兀/3)+cosx^2
f(x)=cos(2x-派/3)-2sin x*cos (派/2+x)
已知函数f(x)=cos(2x-π/3)+sin^2 x-cos^2 x
已知函数f(x)=cos(2x-π\3)+sin²x-cos²x
已知函数f(x)=-4cos^2 x+4√(3)sin x cos x+5,x属于R
向量m=(sinωx+cosωx,√3cosωx),n=(cosωx-sinωx,2sinωx)( ω>0),函数f(x
已知m=(sinωx+cosωx,2sinωx),n=(cosωx-sinωx,3cosωx),(ω>0),若f(x)=