作业帮 > 数学 > 作业

求lim(Sn+Sn+1)/(Sn+Sn-1),an为等差数列,a1不为零

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 18:07:50
求lim(Sn+Sn+1)/(Sn+Sn-1),an为等差数列,a1不为零
求lim(Sn+Sn+1)/(Sn+Sn-1),an为等差数列,a1不为零
设sn=a1+(n-1)d,则sn=a1*n+n(n-1)d/2
代入
lim(Sn+Sn+1)/(Sn+Sn-1)
=[na1+n(n-1)d/2+(n+1)*a1+n^2d]/[na1+n(n-1)d/2+(n-1)a1+(n-2)(n-1)d/2]
上下同时除以n^2

=lim[1/na1+(1-1/n)d/2+(1/n+1/n^2)*a1+d]/[1/na1+(1-1/n)d/2+(1/n-1/n^2)a1+(1-3/n+2/n^2)d/2]
显然,当n趋向无穷大时,1/n,1/n^2均为0
则可化简为
(d/2+d/2)/(d/2+d/2)
=1