设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点分别为A,B点P在椭圆上且异于A,B两点,O为坐标原点,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 18:04:06
设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点分别为A,B点P在椭圆上且异于A,B两点,O为坐标原点,
若|AP|=|PA|,证明直线OP的斜率|k|>√3
若|AP|=|PA|,证明直线OP的斜率|k|>√3
应该是|AP|=|OA|吧.
证明:设椭圆方程为x=acost,y=bsint;左顶点A的坐标为(-a,0);P点的坐标为(acost,bsint);
OP的斜率K=(bsint)/(acost)=(b/a)tant
|AP|=√[(acost+a)²+(bsint)²]=|OA|=a
故得a²cos²t+2a²cost+a²+b²sin²t=a²
即有a²cos²t+2a²cost+b²sin²t=0
用a²cos²t除上式的两边得1+(2/cost)+(a²/b²)tan²t=0
故∣k∣=(a/b)∣tant∣=√[1+2/∣cost∣],由于0
证明:设椭圆方程为x=acost,y=bsint;左顶点A的坐标为(-a,0);P点的坐标为(acost,bsint);
OP的斜率K=(bsint)/(acost)=(b/a)tant
|AP|=√[(acost+a)²+(bsint)²]=|OA|=a
故得a²cos²t+2a²cost+a²+b²sin²t=a²
即有a²cos²t+2a²cost+b²sin²t=0
用a²cos²t除上式的两边得1+(2/cost)+(a²/b²)tan²t=0
故∣k∣=(a/b)∣tant∣=√[1+2/∣cost∣],由于0
已知椭圆C的方程为x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,
设椭圆x2/a2+y2/b2=1(a大于b大于0)的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左脚点为F,左、右顶点分别为A、C,上顶点为B,O为原点,P为
高二解析几何(椭圆)设A,B是椭圆(x^2)/4+(y^2)=1上的两点,O为坐标原点若直线AB在y轴上截距为4,且OA
已知A、B为椭圆(x^2)/4+(y^2)/3=1的左右两个顶点,F为椭圆饿右焦点,P为椭圆上异于A、B的任意一点,直线
已知椭圆C x^2/a^2+y^2/b^2=1(a>b>0)上的两点,P.Q在x轴上的射影分别为椭圆的左右焦点且PQ两点
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的上顶点为A,椭圆C上两点P,Q在在x轴上的射影分别为左焦点F
设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,P满足OP向量=1/2(
已知椭圆x^2/2+y^2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A.B两点
已知椭圆x^2/a^2+y^2/b^2=1上有两点P,Q,O为坐标原点,设直线OP,OQ的斜率分别为
设椭圆x 2/a 2+y 2/b 2=1(a>b>0)的右焦点F,斜率为1的直线过F,并交椭圆于A,B点,点O为坐标原点
椭圆离心率的问题,1.设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点分别为F1,F2,点P在椭圆上,且