作业帮 > 数学 > 作业

设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点分别为A,B点P在椭圆上且异于A,B两点,O为坐标原点,

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 18:04:06
设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点分别为A,B点P在椭圆上且异于A,B两点,O为坐标原点,
若|AP|=|PA|,证明直线OP的斜率|k|>√3
设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点分别为A,B点P在椭圆上且异于A,B两点,O为坐标原点,
应该是|AP|=|OA|吧.
证明:设椭圆方程为x=acost,y=bsint;左顶点A的坐标为(-a,0);P点的坐标为(acost,bsint);
OP的斜率K=(bsint)/(acost)=(b/a)tant
|AP|=√[(acost+a)²+(bsint)²]=|OA|=a
故得a²cos²t+2a²cost+a²+b²sin²t=a²
即有a²cos²t+2a²cost+b²sin²t=0
用a²cos²t除上式的两边得1+(2/cost)+(a²/b²)tan²t=0
故∣k∣=(a/b)∣tant∣=√[1+2/∣cost∣],由于0