设e1,e2,e3是空间向量的一组基底,求证e1-e2,e2-2e3,e3-3e1也是一组基底
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 19:04:23
设e1,e2,e3是空间向量的一组基底,求证e1-e2,e2-2e3,e3-3e1也是一组基底
两组向量都含3个向量
所以只需证它们等价(可以互相线性表示)即可
(e1-e2,e2-2e3,e3-3e1) = (e1,e2,e3)K
K =
1 0 -3
-1 1 0
0 -2 1
因为 |K|= -5 ≠ 0
所以 K 可逆.
故两个向量组等价.
注: 两个向量组等价包含有2个信息
1. 等价的向量组的秩相同
由向量组(I)是基底知其线性无关, 故向量组(II)也线性无关
2. 由向量组(I)是基底, 故向量空间中任一向量可由(I)线性表示
而由(I),(II)等价知, 向量空间中任一向量可由(II)线性表示
故(II)也是基底.
所以只需证它们等价(可以互相线性表示)即可
(e1-e2,e2-2e3,e3-3e1) = (e1,e2,e3)K
K =
1 0 -3
-1 1 0
0 -2 1
因为 |K|= -5 ≠ 0
所以 K 可逆.
故两个向量组等价.
注: 两个向量组等价包含有2个信息
1. 等价的向量组的秩相同
由向量组(I)是基底知其线性无关, 故向量组(II)也线性无关
2. 由向量组(I)是基底, 故向量空间中任一向量可由(I)线性表示
而由(I),(II)等价知, 向量空间中任一向量可由(II)线性表示
故(II)也是基底.
已知e1,e2,e3为空间的一个基底,且op=2e1-e2+3e3,oa=e1+2e2-e3,ob=-3e1+e2+2e
已知(e1,e2,e3)是空间的一个基底下列四组向量中 3谁会?
已知e1,e2是平面向量的一组基底,且a=e1+e2,b=3e1-2e1,c=2e1+3e2
已知向量e1 e2 e3 (e1*e2)*e3=(e2*e3)e1 则e1与e3 的关系 答案 是不能确定, 求解释.
空间向量定理证明如何证明向量a=λ1向量e1+λ2向量e2+λ3向量e3的λ1 λ2 λ3是唯一的?e1 e2 e3是单
关于空间向量的题目提示:a,b,c,d,e1,e2,e3均为向量题目是这样的:若a=e1+e2+e3,b=e1+e2-e
设e1 e2是平面内的一组基地,如果向量AB=3e1-2e2 向量BC=4e1+e2 向量CD=8e1-9e2 求证A
若e1,e2,e3都是单位向量,且p=e1+e2+e3,求p绝对值的取值范围
已知e1,e2(是向量)是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2,求x-
已知向量e1,e2,e3,是两两垂直的单位向量,且a=3e1+2e2-e3,b=e1+2e3,则(6a)(1/2b等于)
已知向量e1,e2是平面内的一组基底(1)若AB=e1+e2,BC=2e1+8e2,CA=te1-t^2e2,且A,B,
e1、e2是平面内一组基底,那么( )