不等式的证明题x,y,z>0 证明2(x^3+y^3+z^3)>=x^2(y+z)+y^2(x+z)+z^2(x+y)
试证明(x+y-2z)+(y+z-2x)+(z+x-2y)=3(x+y-2z)(y+z-2x)(z+x-2y)
x,y,z正整数 x>y>z证明 x^2x +y^2y+z^2z>x^(y+z)*y^(x+z)*z^(x+y)
试证明(x+y-2z)³+(y+z-2x)³+(z+x-2y)³=3(x+y-2z)(y+
已知(x+y+z)^2=x^2+y^2+z^2,证明x(y+z)+y(z+x)+z(x+y)=0
证明:(y+z-2x)^3+(z+x-2y)^3+(x+y-2z)^3=3(y+z-2x)(z+x-2y)(x+y-2z
证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).
已知x>0,y>0,z>0,证明x^3/(x+y)+y^3/(y+z)+z^3/(z+x)≥(xy+xz+yz)/2
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1
已知x,y,z 大于0,x+y+z=2,求证 xz/y(y+z)+zy/x(x+y)+yx/z(z+x)大于等于2/3
x/2=y/3=z/5 x+3y-z/x-3y+z
设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(
用柯西不等式证明:如果x,y,z为正数,x+y+z=1,则x^2+y^2+z^2>=1/3