如图,抛物线y=ax2-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 06:50:48
如图,抛物线y=ax2-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
(1)求a的值和该抛物线顶点P的坐标.
(2)求△PAB的面积;
(3)若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
(1)求a的值和该抛物线顶点P的坐标.
(2)求△PAB的面积;
(3)若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
(1)将C(5,4)的坐标代入抛物线解析式y=ax2-5x+4a,得a=1,
∴抛物线解析式y=x2-5x+4=(x−
5
2)2−
9
4
∴抛物线顶点坐标为(
5
2,−
9
4);
(2)∵当y=x2-5x+4中y=0时,x1=1,x2=4,
∴A、B两点的坐标为A(1,0),B(4,0),△PAB的面积=
1
2×3×
9
4=
27
8,
(3)∵抛物线原顶点坐标为(
5
2,−
9
4),平移后的顶点为(−
3
2,−
1
4),
∴平移后抛物线解析式y=(x+
3
2)2−
1
4;
∴抛物线解析式y=x2-5x+4=(x−
5
2)2−
9
4
∴抛物线顶点坐标为(
5
2,−
9
4);
(2)∵当y=x2-5x+4中y=0时,x1=1,x2=4,
∴A、B两点的坐标为A(1,0),B(4,0),△PAB的面积=
1
2×3×
9
4=
27
8,
(3)∵抛物线原顶点坐标为(
5
2,−
9
4),平移后的顶点为(−
3
2,−
1
4),
∴平移后抛物线解析式y=(x+
3
2)2−
1
4;
如图,已知抛物线y=ax2+bx经过点A(2,0)、B(3,3),顶点为C,直线BC与y轴交于点D,点P是x轴负半轴上的
如图,抛物线y=-x2+2x+3与x轴相交于点A、B两点(点A在点B左侧),与y轴相交于点C,顶点为D.
如图,抛物线y=ax2+bx+3与x轴相交于点A(-1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不
如图,抛物线y=ax2+bx+c的顶点为A(-3,2),与x轴相交于点C(-2,0),过点C画CB⊥AC交y轴于点B,连
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y
(2013•洛阳二模)如图,抛物线y=ax2+bx+c的顶点为A(-3,3),且与y轴交于点B(0,5),若平移该抛物线
已知抛物线y=ax2+bx+c的顶点为P(-4,-),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,0).
如图,抛物线y=-x²+bx+c与x轴相交于A,B两点,与y轴相交于点C,点D为抛物线的顶点,点E在抛物线上,
如图,抛物线y=ax2+32x+2与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.
如图抛物线y=ax的平方+bx+c(a>0)与x轴交于A(1,0),B(5,0)两点,与y轴交于点M,抛物线顶点为P,且
如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;
如图抛物线y=ax2-5ax=4经过三角形ABC的三个顶点,已知BC平行于X轴,点A在x轴上,点C在y轴上,且AC=BC