等差数列{an}的前项n的和为Sn,存在常数,使得an+Sn=An^2+Bn+C A=?B、?=C=?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 19:59:07
等差数列{an}的前项n的和为Sn,存在常数,使得an+Sn=An^2+Bn+C A=?B、?=C=?
证明,据题意,{an}为等差数列,不妨假设它的首项为a1,公差为k.所以:
Sn=n*a1+k*n*(n-1)/2
an+Sn=a1+(n-1)k+n*a1+k*n*(n-1)/2
=a1+nk-k+na1+(k/2)n^2-kn/2
=(k/2)n^2+(a1+k/2)n+(a1+k)
据题意,存在常数ABC对所有n成立,则显然:
A=k/2
B=a1+k/2
C=a1-k
这样简单演算,得到
3A-B+C=0
证毕.
打字不易,
Sn=n*a1+k*n*(n-1)/2
an+Sn=a1+(n-1)k+n*a1+k*n*(n-1)/2
=a1+nk-k+na1+(k/2)n^2-kn/2
=(k/2)n^2+(a1+k/2)n+(a1+k)
据题意,存在常数ABC对所有n成立,则显然:
A=k/2
B=a1+k/2
C=a1-k
这样简单演算,得到
3A-B+C=0
证毕.
打字不易,
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数n都成立.(1)若数列
数列{an}的前n项和为Sn,存在常数ABC,使得an+Sn=An^2+Bn+C对任意正整数都成立
数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.若数列{an}为
证明:数列{an}为等差数列的充要条件是数列{an}的前n项和为sn=an²+bn(其中啊a,b为常数)
试证明:数列{an}为等差数列的充要条件是其前n项和Sn=an^2+bn(常数a,b∈R) 感激.
若数列An的前n项和为Sn=an^2+bn+c,(a,b,c属于正整数)则An为等差数列的充要条件是c=0.
已知数列{an}得前n项和为sn=an^2+bn(a,b为常数且a不等于0)求证数列{an}是等差数列
数列{an}的前n项和sn=an2 +bn(a,b为常数),试证明{an}是等差数列,并求a1和d.
等差数列前n项和为Sn且a3a4=117,a2+a5=22,求通项an 若等差数列bn=Sn/(n+c),求非零常数c
已知数列的前n项和Sn=An∧2+Bn+C,求{an}成等差数列的充要条件
an的前n项和为Sn,-a1,sn,an+1成等差数列求an 2设bn=1-Sn问是否存在a1,使等差数列bn为等比数列