把下列各式分解因式:(1)4x3-31x+15;(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;(3)x5+
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:51:04
把下列各式分解因式:
(1)4x3-31x+15;
(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;
(3)x5+x+1;
(4)x3+5x2+3x-9;
(5)2a4-a3-6a2-a+2.
(1)4x3-31x+15;
(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;
(3)x5+x+1;
(4)x3+5x2+3x-9;
(5)2a4-a3-6a2-a+2.
(1)4x3-31x+15=4x3-x-30x+15=x(2x+1)(2x-1)-15(2x-1)=(2x-1)(2x2+x-15)=(2x-1)(2x-5)(x+3);
(2)2a2b2+2a2c2+2b2c2-a4-b4-c4=4a2b2-(a4+b4+c4+2a2b2-2a2c2-2b2c2)=(2ab)2-(a2+b2-c2)2=(2ab+a2+b2-c2)(2ab-a2-b2+c2)=(a+b+c)(a+b-c)(c+a-b)(c-a+b);
(3)x5+x+1=x5-x2+x2+x+1=x2(x3-1)+(x2+x+1)=x2(x-1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1);
(4)x3+5x2+3x-9=(x3-x2)+(6x2-6x)+(9x-9)=x2(x-1)+6x(x-1)+9(x-1)=(x-1)(x+3)2;
(5)2a4-a3-6a2-a+2=a3(2a-1)-(2a-1)(3a+2)=(2a-1)(a3-3a-2)=(2a-1)(a3+a2-a2-a-2a-2)=(2a-1)[a2(a+1)-a(a+1)-2(a+1)]=(2a-1)(a+1)(a2-a-2)=(a+1)2(a-2)(2a-1).
(2)2a2b2+2a2c2+2b2c2-a4-b4-c4=4a2b2-(a4+b4+c4+2a2b2-2a2c2-2b2c2)=(2ab)2-(a2+b2-c2)2=(2ab+a2+b2-c2)(2ab-a2-b2+c2)=(a+b+c)(a+b-c)(c+a-b)(c-a+b);
(3)x5+x+1=x5-x2+x2+x+1=x2(x3-1)+(x2+x+1)=x2(x-1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1);
(4)x3+5x2+3x-9=(x3-x2)+(6x2-6x)+(9x-9)=x2(x-1)+6x(x-1)+9(x-1)=(x-1)(x+3)2;
(5)2a4-a3-6a2-a+2=a3(2a-1)-(2a-1)(3a+2)=(2a-1)(a3-3a-2)=(2a-1)(a3+a2-a2-a-2a-2)=(2a-1)[a2(a+1)-a(a+1)-2(a+1)]=(2a-1)(a+1)(a2-a-2)=(a+1)2(a-2)(2a-1).
把下列各式分解因式.(1)2a3b+8a2b2+8ab3(2)x3y2-4x2y+4x(3)9(a+b)2+12(a+b
1分解因式:2x4-x3-13x2-15=?2.分解因式:x5+x4+x3+x2+x+1=?3分解因式:x4-4x2+6
把下列各式分解因式:1(x+1)(x+2)+ ----4利用分解因式计算:2004 20033 + 3 101 100(
练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+
把下列各式分解因式[1] x3-xy2 [2] xy3+x4 [3] x2-3x+2 [4] x2-x-2 [5] x2
在实数范围内,把下列各式分解因式(1)x²-7(2)x²-2根号3+3
把下列各式分解因式:y²(x²-2x)³-y²
分解因式(b2+a2-c2)2-4a2b2
分解因式:(1)5x2-15x+2xy-6y(2)3a3b-81b4(3)-a4+16.
在△ABC中,若c4-2(a2+b2)c2+a4+a2b2+b4=0,则∠C等于( )
在△ABC中,若c4-2(a2+b2)c2+a4+a2b2+b4=0,则∠C=______.
分解因式:-27x3+8 ,(x2-5x+2)(x2-5x+4)-24 ,x5+x4+x3+x2+x1+1