g(x)在[a,b]连续 f(x)在(a,b)二阶可导 且满足f''(x)+g(x)f'(x)-f(x)=0 x∈[a,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 07:23:35
g(x)在[a,b]连续 f(x)在(a,b)二阶可导 且满足f''(x)+g(x)f'(x)-f(x)=0 x∈[a,b] f(a)=f(b)=0 证明:f(x)=0
反证法
证明:
若f(x)在[a,b]上不恒为0
则f(x)在[a,b]上取得正的最大值或负的最小值
不妨设f(x0)=maxf(x)>0,x∈[a,b]
则x0∈(a,b),f'(x0)=0,f"(x0)≤0
那么f''(x0)+g(x0)f'(x0)-f(x0)<0
这与已知矛盾
同理,若f(x1)=minf(x)<0,x∈[a,b]
则同样可得矛盾
因此,f(x)=0,对任意x∈[a,b]均成立.
以上是全书上的证明,我的疑问是:
若f(x)在[a,b]上不恒为0
则f(x)在[a,b]上取得正的最大值或负的最小值
上面的条件只能推出f(x)在开区间连续,不是闭区间 怎么还能推出他一定有最值呢?还有可能取不到最值呢
反证法
证明:
若f(x)在[a,b]上不恒为0
则f(x)在[a,b]上取得正的最大值或负的最小值
不妨设f(x0)=maxf(x)>0,x∈[a,b]
则x0∈(a,b),f'(x0)=0,f"(x0)≤0
那么f''(x0)+g(x0)f'(x0)-f(x0)<0
这与已知矛盾
同理,若f(x1)=minf(x)<0,x∈[a,b]
则同样可得矛盾
因此,f(x)=0,对任意x∈[a,b]均成立.
以上是全书上的证明,我的疑问是:
若f(x)在[a,b]上不恒为0
则f(x)在[a,b]上取得正的最大值或负的最小值
上面的条件只能推出f(x)在开区间连续,不是闭区间 怎么还能推出他一定有最值呢?还有可能取不到最值呢
题目的条件是有点问题,从“f''(x)+g(x)f'(x)-f(x)=0,x∈[a,b]”来看,题目的第二个条件应该是:f(x)在[a.b]上二阶可导
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
已知定义在R上的函数f(x),g(x)满足f(x)/g(x)=a^x,且f'(x)g(x)
若f(x)在[a,b]上连续,且对任何[a,b]上连续函数g(x),恒有∫(a到b)f(x)g(x)=0,求证f(x)恒
设函数f(x),g(x)在[a,b]上可导,且f'(x)>g'(x),则当a
柯西中值定理证明:f(a)-f(m)/g(m)-g(b) =f'(m)/g'(m) f(x),g(x)满足在区间a,b连
设f(x),g(x)在{a,b}上连续,在(a,b)内可导,且f'(x)=g'(x),x∈(a,b).证明存在常数C,使
设f(x),g(x)是定义在[a,b]上的可导函数,且f`(x)>g`(x),令F(x)=f(x)-g(x),则F(x)
高数证明题!设f(x),g(x)在[a,b]连续且可导,g'(x)不等于0,证明存在ζ∈(a,b)
设f(x)在[a,b]二阶可导,且f''(x)
.设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.证明:
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
若f(x),g(x)在[a,b] 上连续,证明max( f(x) ,g(x ))在[a,b]上连续