limx趋于0(tanx-sin)/x^3用洛比达法则
用洛必达法则求极限:limx趋于3根号(1+x)-2/sin(x-3)
limx→0 tan(tanx)-sin(sinx)/x^3
limx趋近于0 (tanx-sinx)/sin^3x
limx趋于0(tanx-sinx)/x,求极限
1、用洛必达法则求limx趋近于0时 sin^4(2x)/x^3 的极限 2、limn趋于无穷(1/n^a +2/n^a
limx→0 (tanx-sinx)/sin^3x =limx→0 (tanx-sinx)/x³ 为什么可以直
如何参照重要极限limx趋于0时sinx/x=1的形式,求解以下极限limx趋于0时3x+sinx/3x-tanx
求极限limx→0(e^x一1一x)^2/tanx*sin^3x
求limx趋于0 [5x^2-2(1-cos2x)]/(3x^3+4tanx^2)极限
limx趋向于0(tanx-sinx)/sin^3
利用泰勒公式求limx趋于0e^(tanx)-1/x极限
limx趋近于0tanx-x/x-sinx 用洛必达法则求极限