作业帮 > 数学 > 作业

关于恒等变换的数学题sin37.5°cos7.5°=cos^2x+cos^2(120°+x)+cos^2(240°+x)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 19:38:45
关于恒等变换的数学题
sin37.5°cos7.5°=
cos^2x+cos^2(120°+x)+cos^2(240°+x)=
关于恒等变换的数学题sin37.5°cos7.5°=cos^2x+cos^2(120°+x)+cos^2(240°+x)
sin37.5°cos7.5° (积化和差)
=1/2(sin(37.5+7.5)+sin(37.5-7.5))
=1/2(sin45+sin30)
=1/2(根号2/2+1/2)
=1/4*根号2+1/4
(cosx)^2+(cos(120+x))^2+(cos(240+x)^2 (倍角公式)
=1/2(cos2x+1+cos(2x+240)+1+cos(2x+480)+1)
=3/2+1/2(cos2x+cos(2x+240)+cos(2x+120)) (和差化积)
=3/2+1/2(cos2x+cos2xcos240-sin2xsin240+cos2xcos120-sin2xsin120)
=3/2