关于恒等变换的数学题sin37.5°cos7.5°=cos^2x+cos^2(120°+x)+cos^2(240°+x)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 19:38:45
关于恒等变换的数学题
sin37.5°cos7.5°=
cos^2x+cos^2(120°+x)+cos^2(240°+x)=
sin37.5°cos7.5°=
cos^2x+cos^2(120°+x)+cos^2(240°+x)=
sin37.5°cos7.5° (积化和差)
=1/2(sin(37.5+7.5)+sin(37.5-7.5))
=1/2(sin45+sin30)
=1/2(根号2/2+1/2)
=1/4*根号2+1/4
(cosx)^2+(cos(120+x))^2+(cos(240+x)^2 (倍角公式)
=1/2(cos2x+1+cos(2x+240)+1+cos(2x+480)+1)
=3/2+1/2(cos2x+cos(2x+240)+cos(2x+120)) (和差化积)
=3/2+1/2(cos2x+cos2xcos240-sin2xsin240+cos2xcos120-sin2xsin120)
=3/2
=1/2(sin(37.5+7.5)+sin(37.5-7.5))
=1/2(sin45+sin30)
=1/2(根号2/2+1/2)
=1/4*根号2+1/4
(cosx)^2+(cos(120+x))^2+(cos(240+x)^2 (倍角公式)
=1/2(cos2x+1+cos(2x+240)+1+cos(2x+480)+1)
=3/2+1/2(cos2x+cos(2x+240)+cos(2x+120)) (和差化积)
=3/2+1/2(cos2x+cos2xcos240-sin2xsin240+cos2xcos120-sin2xsin120)
=3/2
【三角恒等变换】cos(33°-x)sin(63°-x)-cos(x+57°)sin(27°+x)
cos^2x+cos^2(x+120°)+cos^2(x+240°)
函数y=cos(x-5°)+3(根号2)cos(x+50°)的值域是
简单的三角恒等变换 函数y=[sin2x+sin(2x+pai/3)]/[cos2x+cos(2x+pai/3)]的最小
「二倍角的数学题」cos(75°+X)=3/5,X是第三象限的角,则sin(30°-2X)-cos(45°-X)=___
α+β=120°,cos α+cos β=1/2(x+y),求x+y的最大值
三角函数的恒等变换已知cos(x+y)=-3/5 cosx=2/3 x y为锐角 求cosy?题中的xy就是 啊而发 和
已知cos 2x=3/5,求sin^4 x+cos^4 x的值
三角函数恒等变换已知函数f(x)=asinx*cosx-√3a(cos)x^2+(√3a)/2+b (a>0)1.写出函
已知函数f(x)=6cos^4x-5cos^2x+1/2cos^2x-1,求f(x)的定义域值域
cos(x^2)dx
cos x>-1/2