角的推理
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 19:08:25
如图a,若ABC//D,点P在AB,CB外部,则有∠B=∠BOD,又因∠BOD是三角形POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD.∠B,∠D之间有何种数量关系?请证明你的结论。
解题思路: 延长BP交CD于点O,根据两直线平行,内错角相等可得∠B=∠POD,再利用三角形的一个外角等于与它不相邻的两个内角的和即可得解
解题过程:
解: 图②中,∠BPD=∠B+∠D.
理由如下:
延长BP交CD于点O,
∵AB∥CD,
∴∠B=∠BOD,
在△POD中,∠BPD=∠POD+∠D,
∴∠BPD=∠B+∠D.
解题过程:
解: 图②中,∠BPD=∠B+∠D.
理由如下:
延长BP交CD于点O,
∵AB∥CD,
∴∠B=∠BOD,
在△POD中,∠BPD=∠POD+∠D,
∴∠BPD=∠B+∠D.