作业帮 > 数学 > 作业

已知:方程x2-(2k+1)(x-2)-4=0

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 06:08:53
已知:方程x2-(2k+1)(x-2)-4=0
(1)求证:无论k取任何实数,方程总有两个实数根.
(2)若等腰△ABC的一边a=4,另两边b、c恰是这个方程的两根,试求△ABC的周长.
已知:方程x2-(2k+1)(x-2)-4=0
(1)证明:方程化为一般形式为:x2-(2k+1)x+4k-2=0,
∵△=(2k+1)2-4(4k-2)=(2k-3)2
而(2k-3)2≥0,
∴△≥0,
所以无论k取任何实数,方程总有两个实数根.
(2)x2-(2k+1)x+4k-2=0,有(x-2)[x-(2k-1)]=0,
∴x1=2,x2=2k-1,
当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k-1,解得k=
3
2,这不满足三角形三边的关系,舍去;
当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k-1=4,解得k=
5
2,此时三角形的周长为2+4+4=10.
所以△ABC的周长为10.