椭圆与中点弦的问题,椭圆不知,弦方程以及弦中点已知,求椭圆方程.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 08:12:22
椭圆与中点弦的问题,椭圆不知,弦方程以及弦中点已知,求椭圆方程.
已知椭圆,X^2/a^2+Y^2/b^2=1的一条弦所在的直线方程是X-Y+3=0,弦的中点坐标是 (-2,1),则椭圆的离心率是? A.1/2 B 2份之根号2 C 2份之根号3 D 5份之根号5
已知椭圆,X^2/a^2+Y^2/b^2=1的一条弦所在的直线方程是X-Y+3=0,弦的中点坐标是 (-2,1),则椭圆的离心率是? A.1/2 B 2份之根号2 C 2份之根号3 D 5份之根号5
先推导一个有关椭圆中点弦的一般性结论:
设椭圆x^2/a^2+y^2/b^2=1
弦的两端点为(x1,y1),(x2,y2),(x1≠x2)
∴有x1^2/a^2+y1^2/b^2=1
x2^2/a^2+y2^2/b^2=1
两式相减得:
(x1+x2)(x1-x2)/a^2+(y1+y2)(y1-y2)/b^2=0
∵p(x0,y0)为中点,∴x1+x2=2x0,y1+y2=2y0
∴2x0(x1-x2)/a^2+2y0(y1-y2)/b^2=0
∴x0/a^2+(y0/b^2)×k=0(其中k=(y1-y2)/ (x1-x2)为中点弦所在直线的斜率)
∴k=(-b^2x0)/(a^2y0) ……这是个重要结论,要记住.
对于本题来说,k=1,x0=-2,y0=1.
代入上式有:1= 2b^2/a^2
a^2= 2b^2,又因b^2= a^2-c^2,
所以a^2=2 a^2-2c^2,
a^2=2 c^2,c/a=√2/2.
即离心率是√2/2.
选B.
设椭圆x^2/a^2+y^2/b^2=1
弦的两端点为(x1,y1),(x2,y2),(x1≠x2)
∴有x1^2/a^2+y1^2/b^2=1
x2^2/a^2+y2^2/b^2=1
两式相减得:
(x1+x2)(x1-x2)/a^2+(y1+y2)(y1-y2)/b^2=0
∵p(x0,y0)为中点,∴x1+x2=2x0,y1+y2=2y0
∴2x0(x1-x2)/a^2+2y0(y1-y2)/b^2=0
∴x0/a^2+(y0/b^2)×k=0(其中k=(y1-y2)/ (x1-x2)为中点弦所在直线的斜率)
∴k=(-b^2x0)/(a^2y0) ……这是个重要结论,要记住.
对于本题来说,k=1,x0=-2,y0=1.
代入上式有:1= 2b^2/a^2
a^2= 2b^2,又因b^2= a^2-c^2,
所以a^2=2 a^2-2c^2,
a^2=2 c^2,c/a=√2/2.
即离心率是√2/2.
选B.
已知椭圆x²/2+y²=1,求过椭圆左焦点f引椭圆的割线,求截得弦中点p的轨迹方程
已知椭圆x^2/2+y^2=1,求斜率为2的直线与椭圆相交所得弦中点的轨迹方程
已知椭圆x/2+y=1,求斜率为2的直线与椭圆相交所得弦中点的轨迹方程.
已知椭圆些x^2/2+y^2=1过点A(2,1)的直线与椭圆交点M、N,求弦MN中点轨迹方程
高二 椭圆问题1、已知椭圆x^/16+y^=1,求(1)斜率为2的平行弦的中点的轨迹方程(2)过Q(8,2)的直线被椭圆
已知椭圆方程x^/9+y^/25=1,P(1,1)是椭圆的弦AB的中点,求AB所在直线的方程.
已知椭圆1/2+y^2=1和椭圆外一点(0,2),过这点引直线与椭圆交于A,B两点,求弦AB的中点P的轨迹方程
已知椭圆x^2/16+y^2/4=1,求椭圆中所有长为2的弦的中点的轨迹方程
已知椭圆x²/16+y²/4=1求斜率为2的直线交椭圆所得的弦的中点轨迹方程
已知椭圆x^2/2+Y^2=1 过点A(2,1)椭圆的割线,求截得弦中点的轨迹方程
用效参法求轨迹方程已知椭圆x^/2+y^=1,过A(2,1)的直线L与椭圆相交,求L被截得的弦的中点的轨迹方程?(尤其是
已知椭圆x2/8+y2/4=1,求斜率为2的弦的中点的轨迹方程