f(x)是定义在R上的增函数且f(x-1)
定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,正无穷)上递增函数
已知f(x)是定义在R+上的增函数,且f(x/y)=f(x)-f(y)
设f(x)是定义在R上的函数,且对于任意x,y属于R,恒有f(x+y)=f(x)f (y),且当x大于0时,f(x)>1
已知函数y=f(x)是定义在R上的减函数,且f(x+y)=f(x)f(y),f(2)=1/9,则不等式f(x)f(3x^
在R上定义的函数f(x)是奇函数,且f(x)=f(2-x),若f(x)在区间(1,2)是减函数,则函数f(x)...
已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)是二次函数,满足条件f(0)=0,且f(x+1)=f(x)+
已知函数f(x)是定义在R上的奇函数,且2f(-1)+6=f(1)+f(0),则f(-1)=?
设函数f(x)是定义在R上的函数,且对于任意x,y∈R.
已知y=f(x)是定义在R上的函数,且对任意x属于R,有f(x+2)[1-f(x)]=f(x)+1成立(1)证明f(x)
已知函数f(x)是定义在R上的减函数,且对任意实数x,y都满足f(x+y)=f(x)+f(y),f(1)=1.若f(X)
定义在R上的函数f(x)为增函数,命题P:函数y=f(x)+f(-x)在R上是偶函数且导函数为增函数;命题Q:函数y=-
已知函数f(x)是定义在R上的单调奇函数,且f(1)=-2,(1)求证f(x)为单调递减函数